
解:(1)∵矩形ABCD,
∴∠A=90°,
∵AB=16,AD=12,
由勾股定理得:BD=

=

=20,
故答案为:20.
(2)①如图,当点E在AB上时,
∵EG∥AD,
∴△BEG∽△BAD,
∴

,
∴

,
解得t=10,
∴当0≤t≤10时,
S=

,

②如图,当点F在BC上时,
∵FG∥CD,
∴△BFG∽△BCD,
∴

,
∴

,
解得t=12.5,
∴当10<t≤12.5时,
S=18-

=

,

③如图,当点E、F均在矩形ABCD外侧,
且EF与BD有交点时,
∵EG∥AD,
∴△BMG∽△BAD,
∴

,
∵FG∥CD,
∴△BKG∽△BCD,
∴

,
∴

,
令MG=x,则GK=6-x,
∴

,
∴

,
∵

,
∴

,
∴当12.5<t≤

(当t=

时,EF过B点)时,
S=

,
=

,
④当EF与BD没有交点时,
即

<t≤20时,
S=GM•GK=

=

,
答:矩形ABCD与△EFG重叠面积S与时间t函数关系式是s=18(0≤t≤10)或s=

(10<t≤12.5)或
S=

(12.5<t≤

)或S=

(

<t≤20).
分析:(1)根据矩形的性质得到∠A=90°,根据勾股定理求出即可;
(2)有4种情况①当点E在AB上时,根据△BEG∽△BAD得出

,求出t=10,当0≤t≤10时s=18;②当点F在BC上时,由△BFG∽△BCD,得出比例式即可求出t=12.5,当10<t≤12.5时,S=18-

,③当点E、F均在矩形ABCD外侧,且EF与BD有交点时,由△BMG∽△BAD和△BKG∽△BCD,推出

,令MG=x,则KG=6-x,

,求出x,进一步求出t,当12.5<t≤

时,S=

,④如图,当EF与BD没有交点时,即

<t≤20时,S=GM•GK,代入求出即可.
点评:本题主要考查对矩形的性质,相似三角形的性质和判定,三角形的面积,解一元一次方程等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度,用的数学思想是分类讨论思想.