精英家教网 > 初中数学 > 题目详情

如图:=,分别是半径的中点

求证:CD=CE.

证明:联结OC.--------------------------1

在⊙O中,∵=
∴∠AOC=∠BOC -----------------------------2分
∵OA=OB,分别是半径的中点
∴OD=OE,∵OC=OC
∴△COD≌△COE(SAS)-------------------------4分
∴CD="CE" ------------------------------------5分

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,D、E分别是⊙O半径OA、OB上的点,CD⊥OA、CE⊥OB、CD=CE,则弧AC的长与弧CB的长的大小关系是(  )
A、
AC
=
BC
B、
AC
BC
C、
AC
BC
D、不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,
AC
=
CB
,D、E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为2,弦AB的长为2
3
,点C与点D分别是劣弧AB与优弧ADB上的精英家教网任一点(点C、D均不与A、B重合).
(1)求∠ACB;
(2)求△ABD的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两个同心圆的半径分别是3cm和6cm,大⊙O的弦MN=6
3
cm,试判断MN与小⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:
AC
=
CB
,D、E分别是半径OA和OB的中点,
求证:CD=CE.

查看答案和解析>>

同步练习册答案