精英家教网 > 初中数学 > 题目详情
如图甲,在平面直角坐标系中,Rt△AOB≌ Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经 过点C。
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图乙,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF,下列结论:①BE+BF的值不变;②,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论。

甲                                                       乙
解:(1)由Rt△AOB≌Rt△CDA得OD=2+1=3,CD=1,
∴C点坐标为(-3,1),
∵抛物线经过点C,
∴1=(-3)2a+(-3)a-2,
∴a=
∴抛物线的解析式为
(2)在抛物线(对称轴的右侧)上存在点P,Q,使四边形ABPQ是正方形,
如图甲,以AB为边在AB的右侧作正方形ABPQ,过P作PE⊥OB于E,QG⊥x轴于G,可证△PBE≌△AQG≌△BAO,
∴PE=AG=BO=2,BE=QG=AO=1,
∴P点坐标为(2,1),Q点坐标为(1,-1),
由(1)抛物线得,
当x=2时,y=1;
当x=1时y=-1,
∴P,Q在抛物线上,
故在抛物线(对称轴的右侧)上存在点P(2,1),Q(1,-1),使四边形ABPQ是正方形;

(3)结论②成立,
证明如下:
如图乙连EF,过F作FM∥BC交AB的延长线于M,则△AMF∽△ABG,

由(1)知△ABC是等腰三角形,
∴∠1=∠2=45°,
∵AF=AE,
∴∠AEF=∠1=45°,
∴∠FAF=90°,
EF是⊙O′的直径,
∴∠EBF=90°,
∵ FM//BG,
∴∠MFB=∠EBF=90°,∠M=∠2=45°,
∴BF=MF,

      乙
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案