精英家教网 > 初中数学 > 题目详情

(1)如图1,经过平移,小船上的点A移到了点B,作出平移后的小船.
(2)如图2,正△ABC,将此三角形绕点C顺时针旋转,使CB与CA重合,得△ACD.
①作出△ACD;②四边形ABCD是什么四边形?

解:(1)如图所示:

(2)①如图所示:
②四边形ABCD是平行四边形.
分析:(1)从A点到B点可以看出,A点移动了2个单位.然后从各点作AB的平行线,且也是2 个单位,得到新点顺次连接即可;
(2)首先根据题意画出图形,由旋转可得AD=BC,AB=AC=CD,故四边形ABCD是平行四边形.
点评:此题主要考查了平移作图,关键是掌握平移以后所得到的对应点连线平行且相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
精英家教网
①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是(  )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是
 
,该图形与圆O的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浙江一模)如图1,在平面上,给定了半径为r的⊙O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这种把点P变为点P′的变换叫做反演变换,点P与点P′叫做互为反演点,⊙O称为基圆.
(1)如图2,⊙O内有不同的两点A、B,它们的反演点分别是A′、B′,则与∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如图3,⊙O内有一点M,请用尺规作图画出点M的反演点M′;(保留画图痕迹,不必写画法).
(3)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆O的半径为r,另一个半径为r1的⊙C,作射线OC交⊙C于点A、B,点A、B关于⊙O的反演点分别是A′、B′,点M为⊙C上另一点,关于⊙O的反演点为M′.求证:∠A′M′B′=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在坐标平面上,抛物线与y轴的交点是(0,5),且经过两个长、宽分别为4和2的相同的长方形的顶点,则这条抛物线对应的函数关系式是
y=-
5
24
x2-
1
12
x+5
y=-
5
24
x2-
1
12
x+5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图,在直角坐标平面上,点A、B在x轴上(A点在B点左侧),点C在y轴正半轴上,若A(-1,0),OB=3OA,且tan∠CAO=2.
(1)求点B、C的坐标;
(2)求经过点A、B、C三点的抛物线解析式;
(3)P是(2)中所求抛物线的顶点,设Q是此抛物线上一点,若△ABQ与△ABP的面积相等,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省天台、椒江、玉环九年级第一次模拟考试数学卷(解析版) 题型:解答题

(12分)如图1,在平面上,给定了半径为的⊙,对于任意点,在射线上取一点,使得·,这种把点变为点的变换叫做反演变换,点与点叫做互为反演点,⊙称为基圆.

 

 

 

 

 

 

 

 


⑴如图2,⊙内有不同的两点,它们的反演点分别是,则与∠一定相等的角是(    ▲   )

(A)∠         (B)∠        (C)∠           (D)∠

⑵如图3,⊙内有一点,请用尺规作图画出点的反演点;(保留画图痕迹,不必写画法).

⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆的半径为,另一个半径为的⊙,作射线交⊙于点,点关于⊙的反演点分别是,点为⊙上另一点,关于⊙的反演点为.求证:∠=90°.

 

 

查看答案和解析>>

同步练习册答案