【题目】教育部明确要求中小学生每天要有2小时体育锻炼,周末朱诺和哥哥在
米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:
朱诺:你要
分钟才能第一次追上我.
哥哥:我骑完一圈的时候,你才骑了半圈!
(1)请根据他们的对话内容,求出朱诺和哥哥的骑行速度(速度单位:米/秒);
(2)哥哥第一次追上朱诺后,在第二次相遇前,再经过多少秒,朱诺和哥哥相距
米?
【答案】(1)朱诺和哥哥的骑行速度分别为
米/秒,
米/秒;(2)哥哥第一次追上朱诺后,在第二次相遇前,再经过60秒或540秒,朱诺和哥哥相距
米.
【解析】
(1)因为哥哥骑完一圈的时候,朱诺才骑了半圈,所以哥哥的速度是朱诺的速度的两倍,设出未知数,根据“10分钟时,哥哥的路程-朱诺的路程=跑道的周长”列出方程便可解答.
(2)设出未知数,分两种情况:①当哥哥超过朱诺100米时,②当哥哥还差100米赶上朱诺时,两人的路程差列出方程便可.
(1)设朱诺的骑行速度为
米/秒,则哥哥的骑行速度为
米/秒,
10分钟=600秒,
根据题意得:600
-600
=1000,
解得:
=
,
=
;
答:朱诺和哥哥的骑行速度分别为
米/秒,
米/秒;
(2)设哥哥第一次追上朱诺后,在第二次相遇前,在经过t秒,朱诺和哥哥相距100米.
①当哥哥超过朱诺100米时,根据题意得:
t -
=
100,
解得:t =
60(秒),
②当哥哥还差100米赶上朱诺时,根据题意得:
t -
=1000-100,
解得:t =
540,
答:哥哥第一次追上朱诺后,在第二次相遇前,再经过60秒或540秒,朱诺和哥哥相距
米.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,
,且满足式子
.
(1)求出
的值;
(2)①在
轴的正半轴上存在一点
,使
的面积等于
的面积的一半,求出点
的坐标;
②在坐标轴的其它位置是否存在点
,使
的面积等于
的面积的一半仍然成立,若存在,直接写出其他符合条件的点
的坐标;
(3)如图2,过点
作
轴交
轴于点
,点
为线段
延长线上一动点,连接
,
平分
,
,当点
运动时,求证:![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若
,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=
,当
>2时,求EC的长度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形
中,
平分
,交
于点
,且
,延长
与
的延长线交于点
,连接
,
.下列结论:①
;②
是等边三角形;③
;④
;⑤
中正确的有( )
![]()
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.
![]()
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),B(-2,4).
![]()
(1)请你在方格中建立直角坐标系,并写出C点的坐标;
(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是 .
(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。
![]()
(1)求证:OE=OF;
(2)若BC=
,求AB的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形
中,
,
,
分别是
,
的中点,连接
并延长交
的延长线于
,连接
并延长交
的延长线于
.
![]()
(1)求证:
;
(2)当平行四边形
中
等于多少度时,四边形
是正方形?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com