精英家教网 > 初中数学 > 题目详情

已知正方形ABCD中,E、F分别是对角线AC、BD的三等分点
(1)求证:四边形BCFE是等腰梯形;
(2)若正方形ABCD的对角线长为9cm,求等腰梯形BCFE的面积.

(1)证明:∵E、F分别是对角线AC、BD的三等分点,
==
∴EF∥BC,
∴四边形BCFE是梯形,
∵E、F分别是对角线AC、BD的三等分点,AC=BD,
∴BF=BD,CE=AC,
∴BF=CE,
∴四边形BCFE是等腰梯形;

(2)解:∵正方形ABCD的对角线长为9cm,
∴设正方形边长为x,=9,
x=
梯形的上底为,高为×=,下底为
∴梯形的面积为:×(+)×=
分析:(1)对角线相等的梯形是等腰梯形,根据此可判定四边形BCFE是等腰梯形.
(2)根据正方形对角线的长,可求出正方形的边长,从而可求出梯形的上底长,下底长和高,从而求出梯形的面积.
点评:本题考查正方形的性质,正方形的对角线相等和梯形的判定定理和梯形面积的求法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知正方形ABCD中,对角线BD长为8,则正方形的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.
(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长沙)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.
(1)求证:△BDG∽△DEG;
(2)若EG•BG=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD中,BD是对角线,BE平分∠DBC交DC于E点,若CE=1,则AB=
2
+1
2
+1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知正方形ABCD中的△DCF可以经过旋转得到△ECB.
(1)图中哪个点是旋转中心?
(2)按什么方向旋转?旋转角是多少度?
(3)若∠ECB=30°,求∠FCB的度数.

查看答案和解析>>

同步练习册答案