精英家教网 > 初中数学 > 题目详情
7、如图,在等腰三角形ABC中,AB=AC=10,EF垂直平分AB,如果△FBC的周长为15,则BC=
5
;如果BC=6,则△FBC的周长为
16
分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据△FBC的周长的表示代入数据计算即可.
解答:解:∵EF垂直平分AB,
∴AF=BF,
∴BC=15-CF-BF=15-AC=15-10=5;
△FBC的周长为BC+CF+BF=BC+AC=10+6=16.
故应填:5;16.
点评:本题主要考查了等腰三角形的性质及线段垂直平分线的性质;熟练掌握相关性质对相等的线段进行等量代换是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知:如图,在等腰三角形ABC中,∠A=90°,∠ABC的平分线BD与AC交于点D,DE⊥BC于点E.求证:AD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春)感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求证:△ABD∽△BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG,交AD于点E,EF⊥AB,垂足为F.
①若∠BAD=20°,则∠C=
70°
70°

②求证:EF=ED.
(2)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
①求∠ECD的度数;
②若CE=5,求BC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC,∠A=40°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE等于(  )

查看答案和解析>>

同步练习册答案