精英家教网 > 初中数学 > 题目详情

如图,把矩形ABCD纸片折叠,使点D与点B重合,则四边形BEDF是________形;若AB=8,BC=6,则折痕EF=________.

菱    
分析:EF与BD相交于点O,根据折叠的性质得到ED=EB,FD=FB,EF⊥BD,则∠EDB=∠EBD,由DC∥AB得∠EBD=∠CDB,则∠EDO=∠FDO,而DO⊥EF,可△DEF为等腰三角形,得到DE=EB=BF=FD,于是可判断四边形DEBF为菱形;
先利用勾股定理计算出BD=10,设BE=x,则DE=x,AE=8-x,在Rt△ADE中根据勾股定理得到62+(8-x)2=x2,可解得x=,然后根据菱形的面积公式计算EF的长.
解答:EF与BD相交于点O,如图,
∵矩形ABCD纸片折叠,使点D与点B重合,
∴EF垂直平分BD,
∴ED=EB,FD=FB,EF⊥BD,
∴∠EDB=∠EBD,
∵DC∥AB,
∴∠EBD=∠CDB,
∴∠EDO=∠FDO,
而DO⊥EF,
∴△DEF为等腰三角形,
∴DF=DE,
∴DE=EB=BF=FD,
∴四边形DEBF为菱形;
在Rt△ABD中,BD===10,
设BE=x,则DE=x,AE=8-x,
在Rt△ADE中,AD2+AE2=DE2,即62+(8-x)2=x2,解得x=
即BE=
∵S菱形DEBF=EF•DB=AD•BE,
∴EF×10=6×
∴EF=
故答案为:菱;
点评:本题考查折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等;对应点的连线段被折痕垂直平分.也考查了矩形的性质、菱形的判定方法以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,把矩形ABCD沿直线EF折叠,使点C与A重合.
(1)只使用直尺和圆规,作出折痕EF,其与AD交于F,BC于E,并作出点D的对应点D′.
(2)连接AE、CF,猜想四边形AECF是什么特殊四边形?并证明你的结论.
(3)当AB=12,AD=18时,求折痕EF长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,把矩形ABCD沿对角线BD对折,使点C落在点C′处,试证明AE=C′E.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把矩形ABCD沿EF折叠,使点A与点C重叠.AB=8,BC=16,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把矩形ABCD沿EF折叠,若∠1=50°,则∠AEF等于
115°
115°

查看答案和解析>>

同步练习册答案