如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.
(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;
(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;
(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.
|
解:由已知条件,可知梯形周长为24,高为4,面积为28.设BE的长为x, 过点F作FG⊥BC于点G, 过点A作AK⊥BC于点K, 则可得FG= 所以S△BEF= (2)存在. 由(1)得- 解得x1=7,x2=5(不合题意,舍去). 所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7. (3)不存在. 假设存在,显然有S△BEF∶S五边形AFECD=1∶2,且(BE+BF)∶(AF+AD+DC+CE)=1∶2. 则有- 整理,得3x2-24x+70=0. 因为b2-4ac=576-840<0, 所以不存在这样的实数x. 即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044
如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.
(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?
(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com