精英家教网 > 初中数学 > 题目详情
在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出(  )
A.6条B.3条C.4条D.5条
C

试题分析:△AOB是直角三角形,所作的以点D,C,O为顶点的三角形中∠COD=90度,OC与AD可能是对应边,这样就可以求出CD的长度,以C为圆心,以所求的长度为半径作圆,圆与x轴有两个交点,因而这样的直线就是两条.同理,当OC与BD是对应边时,又有两条满足条件的直线,共有四条.
解:以点D,C,O为顶点的三角形中∠COD=90度,
当OC与AO是对应边,以C为圆心,以CD的长度为半径作圆,圆与x轴有两个交点,因而这样的直线就是两条.
同理,当OC与BO是对应边时,又有两条满足条件的直线,
所以共有四条.
故选C.
点评:本题主要考查了三角形的相似,注意到分两种情况进行讨论是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,E是AD边上点,∠CEF=90°,EF交AB边于F,

(1)若矩形ABCD的周长为10,设AB=x(0<x≤4),BC=y.写出y与x的函数关系式,并在直角坐标系中画出此函数图象;
(2)求证:△AFE∽△DEC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知等边三角形ABC,D为AC边上的一动点,CD=nDA,连线段BD,M为线段BD上一点,∠AMD=60°,AM交BC于E.
(1)若n=1,则=  =  
(2)若n=2,求证:BM=6DM;
(3)当n=  时,M为BD中点.
(直接写结果,不要求证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若Rt△ABC,∠C=90°,CD为斜边上的高,AC=m,AB=n,则△ACD的面积与△BCD的面积比的值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为(  )
A.3B.4C.3D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一个五边形的各边长顺次为1,3,5,7,9,与其相似的另一个五边形的周长为75,这个五边形的最大边长为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若x:y:z=3:4:7且2x﹣y+z=18,则x+2y﹣z= _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),一正方形纸板ABCD的边长为4,对角线AC、BD交于点O,一块等腰直角三角形的三角板的一个顶点处于点O处,两边分别与线段AB、AD交于点E、F,设BE=
(1)若三角板的直角顶点处于点O处,如图(2).判断三角形EOF的形状,并说明理由。

(2)在(1)的条件下,若三角形EOF的面积为S,求S关于x的函数关系式。
(3)若三角板的锐角顶点处于点O处,如图(3).

①若DF=,求关于的函数关系式,并写出自变量的取值范围;
②探究直线EF与正方形ABCD的内切圆的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案