精英家教网 > 初中数学 > 题目详情

已知,如图,△ABC中,∠C=60°,AD、BE是△ABC的角平分线,且交于点O,
求证:AB=AE+BD.

证明:在AB上取点M使AM=AE,连接OM
∵∠C=60°,AD、BE是△ABC的角平分线,
∴∠MBO=∠ABC,∠BAO=∠BAC,
∴∠BAO+∠MBO=(∠ABC+∠BAC)=(180°-∠C)=60°,
∴∠AOB=120°,
∵AD是∠BAC的平分线,
∴∠OAM=∠OAE,

∴△AMO≌△AEO,
∴∠AOM=∠AOE=180°-∠AOB=60°,
∴∠BOM=180°-(∠AOM+∠AOE)=60°,∠BOD=∠AOE=60°,
∴∠BOM=∠BOD,
∵BE是∠ABC的角平分线,
∴∠MBO=∠DBO,
∵BO是公共边,∠MBO=∠DBO,∠BOD=∠BOM=60°
∴△BOM≌△BOD,
∴BM=BD,
∴AB=AM+BM=AE+BD.
分析:在AB上取点M使AM=AE,判定△AMO≌△AEO,由AD、BE是△ABC的角平分线,∠C=60°得∠AOM=∠AOE=180°-∠AOB=60°
∴∠BOM=180°-(∠AOM+∠AOE)=60°,∠BOD=∠AOE=60°∴∠BOM=∠BOD,由ASA判定△BOM≌△BOD∴BD=BM∴AB=AM+BM=AE+BD
点评:本题考查了全等三角形的判定和性质,学生们应该熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案