精英家教网 > 高中数学 > 题目详情
精英家教网设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)过点P(3,
3
4
7
)
,且离心率e=
7
4

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A(2,0)的动直线AB交椭圆于点M、N,(其中点N位于点A、B之间),且交直线l:x=8于点B(如图).证明:|
MA
|•|
NB
|=|
AN
|•|
MB
|
分析:(Ⅰ)由已知,得
b2
a2
=1-e2=
9
16
,故可设所求椭圆方程为
x2
16
+
y2
9
=m
,将点P(3,
3
4
7
)
的坐标代入上式,得m=1.由此得到所求椭圆C的方程.
(Ⅱ)设M(x1,y1),N(x2,y2),要证原等式成立,只要证
|
MA
|
|
MB
|
=
|
AN
|
|
NB
|
?
2-x1
8-x1
=
x2-2
8-x2
?5(x1+x2)-x1x2=16.
解答:解:(Ⅰ) 由已知,得 
b2
a2
=1-e2=
9
16
,故可设所求椭圆方程为
x2
16
+
y2
9
=m

将点P(3,
3
4
7
)
的坐标代入上式,得 m=1.
∴所求椭圆C的方程为:
x2
16
+
y2
9
=1
;(5分)
(Ⅱ) 设M(x1,y1),N(x2,y2),
要证原等式成立,只要证
|
MA
|
|
MB
|
=
|
AN
|
|
NB
|
?
2-x1
8-x1
=
x2-2
8-x2
?5(x1+x2)-x1x2=16.①(8分)
以下证明①式成立.
证明:设MB:y=k(x-2),由
y=k(x-2)
x2
16
+
y2
9
=1
?(9+16k2)x2-64k2x+64k2-144=0
由韦达定理,得 x1+x2=
64k2
9+16k2
x1x2=
64k2-144
9+16k2
,(11分)
5(x1+x2)-x1x2=5×
64k2
9+16k2
-
64k2-144
9+16k2
=
16(9+16k2)
9+16k2
=16

于是,①式得证.
|
MA
|•|
NB
|=|
AN
|•|
MB
|
.(13分)
点评:本题考查椭圆方程的求法和证明|
MA
|•|
NB
|=|
AN
|•|
MB
|
.解题时要认真审题,注意椭圆性质的合理运用和分析法证明的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
OP
OQ
=-
5
3
求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)若过A.Q.F2三点的圆恰好与直线l:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1
|F2M|
+
1
|F2N|
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦点分别为F1,F2,若P 是椭圆上的一点,|
PF1
|+|
PF2
|=4
,离心率e=
3
2

(1)求椭圆C的方程;
(2)若P 是第一象限内该椭圆上的一点,
PF1
PF2
=-
5
4
,求点P的坐标;
(3)设过定点P(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1,F2,离心率为e=
2
2
,以F1为圆心,|F1F2|为半径的圆与直线x-
3
y-3=0
相切.
(I)求椭圆C的方程;
(II)直线y=x交椭圆C于A、B两点,D为椭圆上异于A、B的点,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案