精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,AC=3,AB=5,∠A=120°;
(1)求BC的长;
(2)求△ABC的边BC上的高AM的长.
分析:(1)在△ABC中,利用余弦定理即可求得BC的长;
(2)利用三角形的面积公式S△ABC=
1
2
AC•ABsin∠BAC=
1
2
BC•AM即可求得AM的长.
解答:解:(1)在△ABC中,AC=3,AB=5,∠A=120°,
故由余弦定理得:BC2=AC2+AB2-2AC•ABcos∠BAC
=9+25-2×3×5×(-
1
2
)=49,
∴BC=7
(2)∵S△ABC=
1
2
AC•ABsin∠BAC
=
1
2
×3×5×
3
2

=
15
3
4

又S△ABC=
1
2
BC•AM=
1
2
×7AM,
1
2
×7AM=
15
3
4

∴AM=
15
3
14
点评:本题考查余弦定理,考查三角形的面积公式,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案