精英家教网 > 高中数学 > 题目详情
已知P:|1-
x-13
|≤2,Q:x2-2x+1-m2≤0(m>0)
,又知非P是非Q的必要非充分条件,则m的取值范围是
2≤m≤5
2≤m≤5
分析:确定P,Q的等价条件,利用非P是非Q的必要非充分条件,得到Q是P的必要非充分条件,然后建立不等式进行计算即可.
解答:解:由|1-
x-1
3
|≤2,得|x-4|≤6,解得-2≤x≤10.即P:-2≤x≤10.
由x2-2x+1-m2≤0,得[x-(1-m)][x-(1+m)]≤0,
∵m>0,
∴1-m<1+m,
∴不等式的解为1-m≤x≤1+m,
即Q:1-m≤x≤1+m.
∵非P是非Q的必要不充分条件,
∴Q是P的必要不充分条件,
1-m≤-1
1+m≤6

解得
m≥2
m≤5
,即2≤m≤5.
∴m的取值范围是2≤m≤5.
点评:本题主要考查集合关系的应用,利用逆否命题的等价性将条件转化为Q是P的必要不充分条件,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x∈R};P={f(x)|f(1-x)=f(1+x),x∈R};Q={f(x)|f(1-x)=-f(1+x),x∈R};若f(x)=(x-1)3,x∈R,则下列关系中正确的序列号为:

①f(x)∈M②f(x)∈N③f(x)∈P④f(x)∈Q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈[1,12],x2-a≥0.命题q:?x0∈R,使得x
 
2
0
+(a-1)x0+1<0.
(1)若p或q为真,p且q为假,求实数a的取值范围. 
(2)实数m分别取什么值时,复数z=m+1+(m-1)i是 ①实数?②虚数?③纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|1-
x-13
|≥2,q:x2-2x+1-m2≥0且m>0,问:是否存在实数m,使¬p是¬q的必要而不充分条件?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设g(x)=2x+数学公式,x∈[数学公式,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g(数学公式);
(3)设已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-数学公式数学公式],则f1(x)=-1,x∈[-数学公式数学公式],f2(x)=sinx,x∈[-数学公式数学公式],设φ(x)=数学公式+数学公式,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市六校高三(上)12月联考数学试卷(理科)(解析版) 题型:解答题

设g(x)=2x+,x∈[,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g();
(3)设已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-],则f1(x)=-1,x∈[-],f2(x)=sinx,x∈[-],设φ(x)=+,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范围.

查看答案和解析>>

同步练习册答案