精英家教网 > 高中数学 > 题目详情

 必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.

如图,在三棱柱中,,顶点在底面上的射影恰为点B,且

(1)求棱BC所成的角的大小;

(2)在棱上确定一点P,使,并求出二面角的平面角的余弦值.

 

 

 

 

 

 

【答案】

 (1)如图,以A为原点建立空间直角坐标系,

与棱BC所成的角是.     ………………………4分

(2)设,则

于是舍去),

P为棱的中点,其坐标为.  …………6分

设平面的法向量为n1

n1.  ……………………………………8分

而平面的法向量是n2=(1,0,0),则

故二面角的平面角的余弦值是.……………10分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.
已知抛物线y2=4x的焦点为F,直线l过点M(4,0).
(1)若点F到直线l的距离为
3
,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.
已知抛物线y2=4x的焦点为F,直线l过点M(4,0).
(1)若点F到直线l的距离为数学公式,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.(6分)

查看答案和解析>>

科目:高中数学 来源:2012年江苏省高考数学全真模拟试卷(5)(解析版) 题型:解答题

必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.
已知抛物线y2=4x的焦点为F,直线l过点M(4,0).
(1)若点F到直线l的距离为,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.(6分)

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(11)(解析版) 题型:解答题

必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.
已知抛物线y2=4x的焦点为F,直线l过点M(4,0).
(1)若点F到直线l的距离为,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.(6分)

查看答案和解析>>

科目:高中数学 来源:2011年浙江省宁波市海曙区效实中学高考数学模拟试卷(文科)(解析版) 题型:解答题

必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.
已知抛物线y2=4x的焦点为F,直线l过点M(4,0).
(1)若点F到直线l的距离为,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.(6分)

查看答案和解析>>

同步练习册答案