【题目】(本小题满分14分)如图,三角形
所在的平面与长方形
所在的平面垂直,
,
,
.
![]()
(1)证明:
平面
;
(2)证明:
;
(3)求点
到平面
的距离.
【答案】(1)证明见解析;(2)证明见解析;(3)
.
【解析】
试题分析:(1)由四边形
是长方形可证
,进而可证
平面
;(2)先证
,再证
平面
,进而可证
;(3)取
的中点
,连结
和
,先证
平面
,再设点
到平面
的距离为
,利用
可得
的值,进而可得点
到平面
的距离.
试题解析:(1)因为四边形
是长方形,所以
,因为
平面
,
平面
,所以
平面![]()
(2)因为四边形
是长方形,所以
,因为平面
平面
,平面
平面
,
平面
,所以
平面
,因为
平面
,所以![]()
![]()
(3)取
的中点
,连结
和
,因为
,所以
,在
中,![]()
,因为平面
平面
,平面
平面
,
平面
,所以
平面
,由(2)知:
平面
,由(1)知:
,所以
平面
,因为
平面
,所以
,设点
到平面
的距离为
,因为
,所以
,即
,所以点
到平面
的距离是![]()
科目:高中数学 来源: 题型:
【题目】圆台的上、下底面半径分别为
、
,母线长
,从圆台母线
的中点
拉一条绳子绕圆台侧面转到
点(
在下底面),求:
![]()
(1)绳子的最短长度;
(2)在绳子最短时,上底圆周上的点到绳子的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,如果存在实数
使得
,那么称
为
的生成函数.
(1)函数
,是否为
的生成函数?说明理由;
(2)设
,
,当
时生成函数
,求
的对称中心(不必证明);
(3)设
,
,取
,
,生成函数
,若函数
的最小值是5,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;
②设有一个线性回归方程
,变量x增加1个单位时,y平均增加5个单位;
③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;
④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.
以上错误结论的个数为( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x2-aln x(a∈R).
(1)若f(x)在x=2处取得极值,求a的值;
(2)求f(x)的单调区间;
(3)求证:当x>1时,
x2+ln x<
x3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以短轴端点和焦点为顶点的四边形的周长为
.
(Ⅰ)求椭圆
的标准方程及焦点坐标.
(Ⅱ)过椭圆
的右焦点作
轴的垂线,交椭圆于
、
两点,过椭圆上不同于点
、
的任意一点
,作直线
、
分别交
轴于
、
两点.证明:点
、
的横坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是一个由
和
构成的
行
列的数表,且
中所有数字之和不小于
,所有这样的数表构成的集合记为
,记
为
的第
行各数之和
,
为
的第
列各数之和
,
为
、
、
,
、
、
、
、
中的最大值.
(1)对如下数表
,求
的值;
|
|
|
|
|
|
|
|
(2)设数表
,求
的最小值;
(3)已知
为正整数,对于所有的
,
,且
的任意两行中最多有
列各数之和为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面PAD是正三角形,侧面
底面ABCD,M是PD的中点.
![]()
(1)求证:
平面PCD;
(2)求侧面PBC与底面ABCD所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机生产厂商为迎接5G时代的到来,要生产一款5G手机,在生产之前,该公司对手机屏幕的需求尺寸进行社会调查,共调查了400人,将这400人按对手机屏幕的需求尺寸分为6组,分别是:
,
,
,
,
,
(单位:英寸),得到如下频率分布直方图:
![]()
其中,屏幕需求尺寸在
的一组人数为50人.
(1)求a和b的值;
(2)用分层抽样的方法在屏幕需求尺寸为
和
两组人中抽取6人参加座谈,并在6人中选择2人做代表发言,则这2人来自同一分组的概率是多少?
(3)若以厂家此次调查结果的频率作为概率,市场随机调查两人,这两人屏幕需求尺寸分别在
和
的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com