【题目】已知椭圆
的方程是
,双曲线
的左右焦点分别为
的左右顶点,而
的左右顶点分别是
的左右焦点.
(1)求双曲线
的方程;
(2)若直线
与双曲线
恒有两个不同的交点,且
与
的两个交点A和B满足
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
|
|
|
|
| |
|
| |
| 12 |
|
|
| |
| 4 |
|
|
| |
合计 |
|
根据上面图表,求
处的数值
在所给的坐标系中画出
的频率分布直方图;
根据题中信息估计总体平均数,并估计总体落在
中的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠
成交的概率为0.6,以优惠
成交的概率为0.4.
(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
(2)某单位需要这种零件650箱,求购买总价
的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
若
为
的极值点,则
”的逆命题为真命题;
“平面向量
,
的夹角是钝角”的充分不必要条件是
;
若命题
,则
;
命题“
,使得
”的否定是:“
,均有
”.其中不正确的个数是
![]()
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:①设A,B为两个集合,则“
”是“
”的充分不必要条件;②
,
;③“
”是“
”的充要条件;④
,代数式
的值都是质数.其中的真命题是________.(填写序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为2的菱形,
,
,平面
平面
,点
为棱
的中点.
![]()
(Ⅰ)在棱
上是否存在一点
,使得
平面
,并说明理由;
(Ⅱ)当二面角
的余弦值为
时,求直线
与平面
所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在
中,
,
,点
在抛物线
上.
(1)求
的边
所在的直线方程;
(2)求
的面积最小值,并求出此时点
的坐标;
(3)若
为线段
上的任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线
的方程为
,
.
(1)若直线
在
轴、
轴上的截距之和为-1,求坐标原点
到直线
的距离;
(2)若直线
与直线
:
和
:
分别相交于
、
两点,点
到
、
两点的距离相等,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年电子商务蓬勃发展,
年某网购平台“双
”一天的销售业绩高达
亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出
次成功交易,并对其评价进行统计,网购者对商品的满意率为
,对快递的满意率为
,其中对商品和快递都满意的交易为
次.
(1)根据已知条件完成下面的
列联表,并回答能否有
的把握认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 |
| ||
对商品不满意 | |||
合计 |
|
(2)为进一步提高购物者的满意度,平台按分层抽样方法从中抽取
次交易进行问卷调查,详细了解满意与否的具体原因,并在这
次交易中再随机抽取
次进行电话回访,听取购物者意见.求电话回访的
次交易至少有一次对商品和快递都满意的概率.
附:
(其中
为样本容量)
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com