【题目】某运动员每次射击命中不低于8环的概率为
,命中8环以下的概率为
,现用随机模拟的方法估计该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率:先由计算器产生0到9之间取整数值的随机数,指定0、1、2、3、4、5表示命中不低于8环,6、7、8、9表示命中8环以下,再以每三个随机数为一组,代表三次射击的结果,产生了如下20组随机数:
![]()
据此估计,该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率为( )
A.
B. ![]()
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】某渔业公司今年初用98万元购进一艘渔船进行捕捞,第一年需要各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.
(1)该船捕捞第几年开始盈利?
(2)若该船捕捞
年后,年平均盈利达到最大值,该渔业公司以24万元的价格将捕捞船卖出;求
并求总的盈利值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列几个命题:①若方程
的两个根异号,则实数
;②函数
是偶函数,但不是奇函数;③函数
在
上是减函数,则实数a的取值范围是
;④ 方程
的根
满足
,则m满足的范围
,其中不正确的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
为抛物线
上的两点,
与
的中点的纵坐标为4,直线
的斜率为
.
(1)求抛物线
的方程;
(2)已知点
,
、
为抛物线
(除原点外)上的不同两点,直线
、
的斜率分别为
,
,且满足
,记抛物线
在
、
处的切线交于点
,线段
的中点为
,若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
为等边三角形,且平面
平面
,
,
,
.
![]()
(Ⅰ)证明:
;
(Ⅱ)若棱锥
的体积为
,求该四棱锥的侧面积.
【答案】(Ⅰ)证明见解析;(Ⅱ)
.
【解析】【试题分析】(I) 取
的中点为
,连接
,
.利用等腰三角形的性质和矩形的性质可证得
,由此证得
平面
,故
,故
.(II) 可知
是棱锥的高,利用体积公式求得
,利用勾股定理和等腰三角形的性质求得
的值,进而求得面积.
【试题解析】
证明:(Ⅰ)取
的中点为
,连接
,
,
∵
为等边三角形,∴
.
底面
中,可得四边形
为矩形,∴
,
∵
,∴
平面
,
∵
平面
,∴
.
又
,所以
.
(Ⅱ)由面
面
,
,
∴
平面
,所以
为棱锥
的高,
由
,知
,
,
∴
.
由(Ⅰ)知
,
,∴
.
.
由
,可知
平面
,∴
,
因此
.
在
中
,
,
取
的中点
,连结
,则
,
,
∴
.
所以棱锥
的侧面积为
.
【题型】解答题
【结束】
20
【题目】已知圆
经过椭圆
:
的两个焦点和两个顶点,点
,
,
是椭圆
上的两点,它们在
轴两侧,且
的平分线在
轴上,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数
满足下列条件:当
时,
的最小值为0,且
成立;当
时,
恒成立.
(1)求
的解析式;
(2)若对
,不等式
恒成立、求实数
的取值范围;
(3)求最大的实数
,使得存在实数
,只要当
时,就有
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为落实国家“精准扶贫”政策,让市民吃上放心蔬菜,某企业于2017年在其扶贫基地投入100万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上,每年投入的资金比上一年增长
.
(1)写出第
年(2018年为第一年)该企业投入的资金数
(万元)与
的函数关系式,并指出函数的定义域
(2)该企业从第几年开始(2018年为第一年),每年投入的资金数将超过200万元?(参考数据
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某服装商场,当某一季节即将来临时,季节性服装的价格呈现上升趋势.设一种服装原定价为每件70元,并且每周(7天)每件涨价6元,5周后开始保持每件100元的价格平稳销售;10周后,当季节即将过去时,平均每周每件降价6元,直到16周末,该服装不再销售.
(1)试建立每件的销售价格
(单位:元)与周次
之间的函数解析式;
(2)若此服装每件每周进价
(单位:元)与周次
之间的关系为
,
,试问该服装第几周的每件销售利润最大?(每件销售利润=每件销售价格-每件进价)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com