【题目】已知椭圆
(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
科目:高中数学 来源: 题型:
【题目】从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的是二等品或三等品”的概率为( )
A. 0.7 B. 0.65
C. 0.35 D. 0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点
为圆心的圆过原点
.
(1)设直线
与圆
交于点
,若
,求圆
的方程;
(2)在(1)的条件下,设
,且
分别是直线
和圆
上的动点,求
的最大值及此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
,
).
(1)若
的部分图像如图所示,求
的解析式;
(2)在(1)的条件下,求最小正实数
,使得函数
的图象向左平移
个单位后所对应的函数是偶函数;
(3)若
在
上是单调递增函数,求
的最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班主任对全班50名学生作了一次调查,所得数据如表:
认为作业多 | 认为作业不多 | 总计 | |
喜欢玩电脑游戏 | 18 | 9 | 27 |
不喜欢玩电脑游戏 | 8 | 15 | 23 |
总计 | 26 | 24 | 50 |
由表中数据计算得到K2的观测值k≈5.059,于是________(填“能”或“不能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
)是偶函数.
(1)求k的值;
(2)若函数
的图象与直线
没有交点,求
的取值范围;
(3)若函数
,
,是否存在实数
使得
最小值为
,若存在,求出
的值; 若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<
)在某一个周期内的图象时,列表并填入了部分数据,如表:
![]()
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为
,求θ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:
理科 | 文科 | 总计 | |
男 | 13 | 10 | 23 |
女 | 7 | 20 | 27 |
总计 | 20 | 30 | 50 |
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2≈4.844,则认为选修文理科与性别有关系出错的可能性约为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,P为椭圆C上任意一点,且
最小值为0.
(1)求曲线C的方程;
(2)若动直线
均与椭圆C相切,且
,试探究在x轴上是否存在定点B,使得点B到
的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com