精英家教网 > 高中数学 > 题目详情

求圆心为A(2,0),且经过极点的圆的极坐标方程.

=4cos为所求的圆的极坐标方程


解析:

如图所示,设M()为圆上的任意一点

(点O,B除外),则OM=,∠MOx=.

连结BM,在直角三角形OBM中,

cos==,即=4cos.(*)

经检验,O(0,),B(4,0)满足方程(*),

所以=4cos为所求的圆的极坐标方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
1
2

(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,点P是其上的动点,
(1)当△PF1F2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

科目:高中数学 来源: 题型:

求以点A(2,0)为圆心,且过点B(2
3
π
6
)的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市东城区东直门中学高三数学提高测试试卷2(文科)(解析版) 题型:解答题

椭圆C:+=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,点P是其上的动点,
(1)当△PF1F2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市东城区东直门中学高三数学提高测试试卷2(理科)(解析版) 题型:解答题

椭圆C:+=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,点P是其上的动点,
(1)当△PF1F2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

同步练习册答案