精英家教网 > 高中数学 > 题目详情

已知圆C的方程为,点A,直线

(1)求与圆C相切,且与直线垂直的直线方程;

(2)O为坐标原点,在直线OA上是否存在异于A点的B点,使得为常数,若存在,求出点B,不存在说明理由.

 

【答案】

(1);(2)存在点B对于圆上任意一点P都有为常数

【解析】(1)因为所求直线与l垂直,所以可设l:,然后再根据直线l与圆C相切,圆心C到直线l的距离等于等于圆的半径3,可建立关于b的方程,求出b的值.

(2)假设存在这样的点B,使得为常数,则

 再根据,

可转化为对任意恒成立问题来解决即可.

解:(1)

(2)假设存在这样的点B,使得为常数,则

  ……①,又 ……②

由①②可得对任意恒成立

所以解得    或  (舍去)

所以存在点B对于圆上任意一点P都有为常数

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的方程为(x-1)2+(y-1)2=1,P点坐标为(2,3),求过P点的圆的切线方程以及切线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为:x2+y2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2
3
,求直线l的方程;
(Ⅱ)圆C上一动点M(x0,y0),
ON
=(0,y0)若向量
OQ
=
OM
+
ON
,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=r2,在圆C上经过点P(x0,y0)的切线方程为x0x+y0y=r2.类比上述性质,则椭圆
x2
4
+
y2
12
=1
上经过点(1,3)的切线方程为
x+y-4=0
x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=4,动点P满足:过点P作直线与圆C相交所得的所有弦中,弦长最小的为2,记所有满足条件的点P形成的几何图形为曲线M.
(1)写出曲线M所对应的方程;(不需要解答过程)
(2)过点S(0,2)的直线l与圆C交于A,B两点,与曲线M交于E,F两点,若AB=2EF,求直线l的方程;
(3)设点T(x0,y0).
①当y0=0时,若过点T存在一对互相垂直的直线同时与圆C有两个公共点,求实数x0的取值范围;
②若过点T存在一对互相垂直的直线同时与圆C有两个公共点,试探求实数x0,y0应满足的条件.

查看答案和解析>>

同步练习册答案