在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线
上时,求直线AB的方程.
(1)
;(2)![]()
解析试题分析:(1)因为
分别为直线与射线
及
的交点, 所以可设
,又点
是
的中点,
所以有
即
∴A、B两点的坐标为
, 4分
∴
, 5分
所以直线AB的方程为
,即
6分
(2)①当直线
的斜率不存在时,则
的方程为
,易知
两点的坐标分别为
所以
的中点坐标为
,显然不在直线
上,
即
的斜率不存在时不满足条件. 8分
②当直线
的斜率存在时,记为
,易知
且
,则直线
的方程为![]()
分别联立
及![]()
可求得
两点的坐标分别为![]()
![]()
所以
的中点坐标为
.10分
又
的中点在直线
上,所以
解得![]()
所以直线
的方程为
,即
13分
考点:本题考查了直线的方程
点评:求直线方程的一般方法
(1)直接法:直接选用直线方程的其中一种形式,写出适当的直线方程;
(2)待定系数法:先由直线满足的一个条件设出直线方程,方程中含有一个待定系数,再由题目中给出的另一条件求出待定系数,最后将求得的系数代入所设方程,即得所求直线方程。简而言之:设方程、求系数、代入。
科目:高中数学 来源: 题型:解答题
如图,在正方形
中,
为坐标原点,点
的坐标为
,点
的坐标为
,分别将线段
和
十等分,分点分别记为
和
,连接
,过
作
轴的垂线与
交于点
。![]()
(Ⅰ)求证:点
都在同一条抛物线上,并求抛物线
的方程;
(Ⅱ)过点
作直线
与抛物线E交于不同的两点
, 若
与
的面积之比为4:1,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别是
,Q是椭圆外的动点,满足
.点
是线段
与该椭圆的交点,点T是
的中点.![]()
(Ⅰ)设
为点
的横坐标,证明
;
(Ⅱ)求点T的轨迹
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的对称轴为坐标轴,焦点是(0,
),(0,
),又点![]()
在椭圆
上.
(1)求椭圆
的方程;
(2)已知直线
的斜率为
,若直线
与椭圆
交于
、
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,以坐标原点
为几点,
轴的正半轴为极轴建立极坐标系.已知直线
上两点
的极坐标分别为
,圆
的参数方程
(
为参数).
(Ⅰ)设
为线段
的中点,求直线
的平面直角坐标方程;
(Ⅱ)判断直线
与圆
的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在平面直角坐标系
中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,求线段
中点
的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(I)求椭圆
的方程;
(II)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若直线
过双曲线
的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点
与
轴不平行的直线与双曲线相交于不同的两点
的垂直平分线为
,求直线
在
轴上截距的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com