科目:高中数学 来源:2013-2014学年四川达州普通高中高三第一次诊断检测理科数学试卷(解析版) 题型:填空题
以下四个命题:
①函数
既无最小值也无最大值;
②在区间
上随机取一个数
,使得
成立的概率为
;
③若不等式
对任意正实数
恒成立,则正实数
的最小值为16;
④已知函数
,若方程
恰有三个不同的实根,则实数
的取值范围是
;以上正确的命题序号是:_______.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省杭州高级中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三第二次阶段性考试数学试卷(解析版) 题型:解答题
(本题满分14分) 已知
是方程
的两个不等实根,函数
的定义域为
.
⑴当
时,求函数
的值域;
⑵证明:函数
在其定义域
上是增函数;
⑶在(1)的条件下,设函数
,
若对任意的
,总存在
,使得
成立,
求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届四川省高二“零诊”考试文科数学试卷(解析版) 题型:解答题
已知函数
(其中a,b为实常数)。
(Ⅰ)讨论函数
的单调区间:
(Ⅱ)当
时,函数
有三个不同的零点,证明:
:
(Ⅲ)若
在区间
上是减函数,设关于x的方程
的两个非零实数根为
,
。试问是否存在实数m,使得
对任意满足条件的a及t
恒成立?若存在,求m的取值范围;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2010年重庆市高三考前第一次模拟考试数学(理) 题型:解答题
(本小题满分12分)
已知函数
,其中,
为实常数且![]()
(Ⅰ)求
的单调增区间;
(Ⅱ)若
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com