满分(12分).
解:(Ⅰ)∵平面A'BD⊥平面BCD,平面A'BD∩平面BCD=BD,CD⊥BD
∴CD⊥平面A'BD,…(2分)
又∵AB?平面A'BD,∴CD⊥A'B. …(4分)
(Ⅱ)如图(1)在

.

∵AD∥BC,∴∠ADB=DBC=30°.
在

.
∴

.…(6分)
如图(2),在Rt△A'BD中,过点A'做A'E⊥BD于E,∴A'E⊥平面BCD.
∵

,…(7分)
∴

.…(8分)
(Ⅲ)在线段BC上存在点N,使得A'N⊥BD,理由如下:
如图(2)在Rt△A'EB中,

,
∴

,…(9分)
过点E做EN∥DC交BC于点N,则

,
∵CD⊥BD,∴EN⊥BD,…(10分)
又A'E⊥BD,A'E∩EN=E,∴BD⊥平面A'EN,
又A'N?平面A'EN,∴A'N⊥BD.
∴在线段BC上存在点N,使得A'N⊥BD,此时

.…(12分)
分析:(Ⅰ)通过已知条件证明CD⊥平面A'BD,然后证明CD⊥A'B.
(Ⅱ)在Rt△ABD中,推出∠ADB=DBC=30°.求出S
△BDC,在Rt△A'BD中,过点A'做A'E⊥BD于E,说明A'E⊥平面BCD.说明是几何体的高,即可求解.
(Ⅲ)在线段BC上存在点N,使得A'N⊥BD,过点E做EN∥DC交BC于点N,推出EN⊥BD,说明BD⊥平面A'EN,A'N⊥BD.即可证明在线段BC上存在点N,使得A'N⊥BD.
点评:本小题主要考查直线与直线、直线与平面的位置关系、棱锥体积公式等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想.