【题目】各项为正数的数列{an}的前n项和为Sn , 且满足:Sn=
an2+
an+
(n∈N*)
(1)求an
(2)设数列{
}的前n项和为Tn , 证明:对一切正整数n,都有Tn<
.
【答案】
(1)解:∵
,
当n=1时,
,解得a1=1.
当n≥2时,
;
∴an=Sn﹣Sn﹣1=
+
an﹣
an﹣12﹣
an﹣1.
整理得:(an+an﹣1)(an﹣an﹣1﹣2)=0,
又∵数列{an}各项为正数,∴当n≥2时,an﹣an﹣1=2,
故数列{an}为首项为1,公差为2的等差数列.
∴an=1+2(n﹣1)=2n﹣1.
(2)证明:可知Tn=
=
∵
,
∴
![]()
= ![]()
=1+
﹣
< ![]()
【解析】(1)分别把n=1和n=n﹣1代入条件式计算a1和递推公式,得出{an}为等差数列,从而得出通项公式;(2)
=
<
,再使用列项求和得出结论.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系
,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知函数
,其中常数
.
(1)若
在
上单调递增,求
的取值范围;
(2)令
,将函数
的图象向左平移
个单位,再向上平移1个单位,得到函数
的图象.区间
满足:
在
上至少含有30个零点.在所有满足上述条件的
中,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为
,边界忽略不计)即为中奖·
乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是
,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
![]()
(Ⅰ)求实数
的值;
(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
关于直线
对称的圆为
.
(1)求圆
的方程;
(2)过点
作直线
与圆
交于
两点,
是坐标原点,是否存在这样的直线
,使得在平行四边形
中
?若存在,求出所有满足条件的直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=
.
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C的对边分别为a,b,c,b=2
,B=
.
(1)若a=2,求角C;
(2)若D为AC的中点,BD=
,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随即编号为1,2…960,分组后在第一组采用简单随机抽样的方法抽到的号码为5,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的32人中,做问卷C的人数为( )
A.15
B.10
C.9
D.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线y=
x与抛物线y=
x2﹣4交于A,B两点,线段AB的垂直平分线与直线y=﹣5交于Q点,当P为抛物线上位于线段AB下方(含A,B)的动点时,则△OPQ面积的最大值为 . ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com