【题目】已知抛物线
的焦点为
,过
的直线交抛物线于
,
两点
(1)若以
,
为直径的圆的方程为
,求抛物线
的标准方程;
(2)过
,
分别作抛物线的切线
,
,证明:
,
的交点在定直线上.
科目:高中数学 来源: 题型:
【题目】已知椭圆
,抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上各取两个点,其坐标分别是
,
,
,
.
(
)求
,
的标准方程.
(
)过点
的直线
与椭圆
交于不同的两点
,
,且
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换
得到曲线,设M(x,y)为
上任意一点,求
的最小值,并求相应的点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解共享单车的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率分布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
![]()
(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)估计样本的平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的两个焦点分别为
,
,点P是椭圆上的任意一点,且
的最大值为4,椭圆C的离心率与双曲线
的离心率互为倒数.
Ⅰ
求椭圆C的方程;
Ⅱ
设点
,过点P作两条直线
,
与圆
相切且分别交椭圆于M,N,求证:直线MN的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
|
|
|
|
| |
|
| |
| 12 |
|
|
| |
| 4 |
|
|
| |
合计 |
|
根据上面图表,求
处的数值
在所给的坐标系中画出
的频率分布直方图;
根据题中信息估计总体平均数,并估计总体落在
中的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠
成交的概率为0.6,以优惠
成交的概率为0.4.
(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
(2)某单位需要这种零件650箱,求购买总价
的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com