精英家教网 > 高中数学 > 题目详情
设(1-x)(1+2x)5=a+a1x+a2x2+…+a6x6,则a2=   
【答案】分析:要求a2,只要求解展开式中的含x2项的系数,根据题意只要先求出(1+2x)5的通项,即可求解
解答:解∵(1-x)(1+2x)5=a+a1x+a2x2+…+a6x6
而(1+2x)5展开式的通项为
∴(1-x)(1+2x)5=展开式中含x2的项为=30x2
∴a2=30
故答案为:30
点评:本题主要考查了二项展开式的通项在求解指定项中的应用,解题的关键是寻求指定项得到的途径
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列两个对应是否是集合A到集合B的映射?

(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则f:x→2x+1;

(2)设A=N *,B={0,1},对应法则f:x→x除以2得到的余数;

(3)设X={1,2,3,4},Y={1,,,},f:x→x取倒数?;

(4)A={(x,y)||x|<2,x+y<3,x∈Z,y∈N},B={0,1,2},f:(x,y)→x+y;

(5)A={x|x>2,x∈N},B=N,f:x→小于x的最大质数;

(6)A=N,B={0,1,2},f:x→x被3除所得余数.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省新余四中高三(上)第一次周周练数学试卷(理科)(解析版) 题型:解答题

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州市仙居县宏大中学高一(上)期中数学试卷(解析版) 题型:解答题

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年浙江省高考数学冲刺试卷A(理科)(解析版) 题型:解答题


(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=f'(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9.

查看答案和解析>>

同步练习册答案