【题目】已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足
(2,2
)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
【答案】(1)y2=4x;;(2)直线NL恒过定点(﹣3,0),理由见解析.
【解析】
(1)根据抛物线的方程,求得焦点F(
,0),利用
(2,2
),表示点P的坐标,再代入抛物线方程求解.
(2)设M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y
和ML的方程y
,因为A(3,﹣2),B(3,﹣6)在这两条直线上,分别代入两直线的方程可得y1y2=12,然后表示直线NL的方程为:y﹣y1
(x
),代入化简求解.
(1)由抛物线的方程可得焦点F(
,0),满足
(2,2
)的P的坐标为(2
,2
),P在抛物线上,
所以(2
)2=2p(2
),即p2+4p﹣12=0,p>0,解得p=2,所以抛物线的方程为:y2=4x;
(2)设M(x0,y0),N(x1,y1),L(x2,y2),则y12=4x1,y22=4x2,
直线MN的斜率kMN
,
则直线MN的方程为:y﹣y0
(x
),
即y
①,
同理可得直线ML的方程整理可得y
②,
将A(3,﹣2),B(3,﹣6)分别代入①,②的方程
可得
,消y0可得y1y2=12,
易知直线kNL
,则直线NL的方程为:y﹣y1
(x
),
即y
x
,故y
x
,
所以y
(x+3),
因此直线NL恒过定点(﹣3,0).
科目:高中数学 来源: 题型:
【题目】如图1所示,在直角梯形
中,
,
,
,
,
,点
恰好在线段
的垂直平分线上,以
为折痕将
折起,使点
到达点
的位置,且平面
底面
,如图2所示,
是线段
的中点.
![]()
(1)证明:
平面
;
(2)若三棱锥
的体积为1,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
(
),将曲线
向左平移2个单位长度得到曲线
.
(1)求曲线
的普通方程和极坐标方程;
(2)设直线
与曲线
交于
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高三学生的“理科综合”成绩是否与性别有关,某校课外学习兴趣小组在本地区高三年级理科班中随机抽取男、女学生各100名,然后对这200名学生在一次联合模拟考试中的“理科综合”成绩进行统计规定:分数不小于240分为“优秀”小于240分为“非优秀”.
(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有90%以上的把握认为“理科综合”成绩是否优秀与性别有关.
性别 | 优秀 | 非优秀 | 总计 |
男生 | 35 | ||
女生 | 75 | ||
总计 |
(2)用分层抽样的方法从成绩优秀的学生中随机抽取12名学生,然后再从这12名学生中抽取3名参加某高校举办的自主招生考试,设抽到的3名学生中女生的人数为X,求X的分布列及数学期望.
附:
,其中
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:
.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:
圆面积
矢
.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000
,建筑容积约为340000
,估计体育馆建筑高度(单位:
)所在区间为( )
参考数据:
,
,
,
,
.
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】牛顿迭代法(Newton's method)又称牛顿–拉夫逊方法(Newton–Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设
是
的根,选取
作为
初始近似值,过点
作曲线
的切线
与
轴的交点的横坐标
,称
是
的一次近似值,过点
作曲线
的切线,则该切线与
轴的交点的横坐标为
,称
是
的二次近似值.重复以上过程,直到
的近似值足够小,即把
作为
的近似解.设
构成数列
.对于下列结论:
![]()
①
;
②
;
③
;
④
.
其中正确结论的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
,
两点.若直线
斜率为
时,
.
(1)求椭圆
的标准方程;
(2)试问以
为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com