已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求λ的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.
分析:(1)由题意由于f(x)=x,所以函数g(x)=λf(x)+sinx=λx+sinx,又因为该函数在区间[-1,1]上的减函数,所以可以得到λ的范围;
(2)由于g(x)<t2+λt+1在x∈[-1,1]上恒成立?[g(x)]max=g(-1)=-λ-sinl,解出即可;
解答:解:(1)∵f(x)=x,
∴g(x)=λx+sinx,
∵g(x)在[-1,1]上单调递减,
∴g'(x)=λ+cosx≤0
∴λ≤-cosx在[-1,1]上恒成立,λ≤-1,故λ的最大值为-1.
(2)由题意[g(x)]
max=g(-1)=-λ-sinl
∴只需-λ-sinl<t
2+λt+1
∴(t+1)λ+t
2+sin+1>0(其中λ≤-1),恒成立,
令h(λ)=(t+1)λ+t
2+sin1+1>0(λ≤-1),
则
,
∴
,而t
2-t+sin1>0恒成立,
∴t<-1
又t=-1时-λ-sinl<t
2+λt+1
故t的取值范围:t≤-1
点评:此题考查了导函数,利用导函数求解恒成立问题,还考查了函数恒成立问题,二次函数的恒成立问题分两类,一是大于0恒成立须满足开口向上,且判别式小于0,二是小于0恒成立须满足开口向下,且判别式小于0.