已知等比数列
中,
,公比
,
为
的前n项和.
(1)求![]()
(2)设
,求数列
的通项公式.
科目:高中数学 来源: 题型:解答题
已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}对n∈N*,均有
+
+…+
=an+1成立,求c1+c2+c3+…+c2014的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙两容器中分别盛有两种浓度的某种溶液
,从甲容器中取出
溶液,将其倒入乙容器中搅匀,再从乙容器中取出
溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:
,
,第
次调和后的甲、乙两种溶液的浓度分别记为:
、
.
(1)请用
、
分别表示
和
;
(2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若数列
满足条件:存在正整数
,使得
对一切
都成立,则称数列
为
级等差数列.
(1)已知数列
为2级等差数列,且前四项分别为
,求
的值;
(2)若
为常数),且
是
级等差数列,求
所有可能值的集合,并求
取最小正值时数列
的前3
项和
;
(3)若
既是
级等差数列
,也是
级等差数列,证明:
是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•山东)等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
| | 第一列 | 第二列 | 第三列 |
| 第一行 | 3 | 2 | 10 |
| 第二行 | 6 | 4 | 14 |
| 第三行 | 9 | 8 | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N﹡.
(1)求a1的值;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在
个实数组成的
行
列数表中,先将第一行的所有空格依次填上![]()
,
,![]()
![]()
,再将首项为
公比为
的数列
依次填入第一列的空格内,然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规律填写其它空格
| | 第1列 | 第2列 | 第3列 | 第4列 | | 第 |
| 第1行 | | |||||
| 第2行 | | | | | | |
| 第3行 | | | | | | |
| 第4行 | | | | | | |
| | | | | | | |
| 第 | | | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com