精英家教网 > 高中数学 > 题目详情

有2n-1位数的自然数a1a2ana2n-2a2n-1称为凹数,如果a1>a2>…an,且a2n-1>a2n-2>…>an,其中ai(i=1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a1a2a3a1a3)共有           个。(用数字作答).

0~7均可作为十位数,有8类,其三位凹数个数分别为

=240个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有20张卡片,每张卡片上分别标有两个连续的自然数k,k+1,其中k=0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为A,则P(A)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a2x+1
3x-1
(a∈N)
,方程f(x)=-2x+7有两个根x1,x2,且x1<1<x2<3.
(1)求自然数a的值及f(x)的解析式;
(2)记等差数列{an}和等差数列{bn}的前n项和分别为Sn和Tn,且
Sn
Tn
=f(n),(n∈N*)
,设g(n)=
an
bn
,求g(n)的解析式及g(n)的最大值;
(3)在(2)小题的条件下,若a1=10,写出数列{an}和{bn}的通项,并探究在数列{an}和{bn}中是否存在相等的项?若有,求这些相等项从小到大排列所成数列{cn}的通项公式;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有20张卡片,每张卡片上分别标有两个连续的自然数k,k+1,其中k=0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为A,则P(A)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有2n-1位数的自然数a1a2…an…a2n-2a2n-1称为凹数,如果a1>a2>…>an且a2n-1>a2n-2>…an,其中ai(i=1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a1a2a3(a1≠a3)共有_______________个.(用数字作答)

查看答案和解析>>

同步练习册答案