【题目】已知椭圆
的离心率为
,点
在椭圆
上,焦点为
,圆O的直径为
.
![]()
(1)求椭圆C及圆O的标准方程;
(2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于
两点.记
的面积为
,证明:
.
【答案】(1)
,
;(2)见解析
【解析】
(1)利用椭圆的性质列出方程组,即可得到椭圆C及圆O的标准方程;
(2)利用斜截式设出直线
的方程,根据点到直线的距离公式得到点
到直线
的距离,将直线
的方程代入椭圆,结合韦达定理,得出
的长度,利用三角形面积公式以及二次函数的性质即可证明
.
(1)由题意,椭圆C的方程为
.
可得
,解得![]()
所以椭圆C的方程为
.
因为焦点在
轴上,
所以椭圆C的焦点为
.
所以直径为
的圆O的方程为
.
(2)由题意知,直线l与圆O相切于第一象限内的点P,
设直线
的斜截式方程为
.
因为直线
与圆
相切,
所以点
到直线
的距离为
.
即
.
因为直线
与椭圆C相交于
两点,
由
,整理得
,
设
,则
.
因为![]()
.
又
,
所以
.
所以
.
又因为
,
所以
.
因为
,
所以![]()
.
设
,则
,则
.
令
.
则
.
设![]()
因为
在
上单调递减,
所以
.
所以
.
科目:高中数学 来源: 题型:
【题目】
年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 |
| ||
无武汉旅行史 |
| ||
总计 |
|
|
(1)请将上面列联表填写完整,并判断能否在犯错误的概率不超过
的前提下,认为有武汉旅行史与有确诊病例接触史有关系?
(2)已知在无武汉旅行史的
名患者中,有
名无症状感染者.现在从无武汉旅行史的
名患者中,选出
名进行病例研究,求
人中至少有
名是无症状感染者的概率.
下面的临界值表供参考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰
中,斜边
,
为直角边
上的一点,将
沿直线
折叠至
的位置,使得点
在平面
外,且点
在平面
上的射影
在线段
上设
,则
的取值范围是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)直线
与
轴的交点为
,经过点
的直线
与曲线
交于
两点,若
,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100
的有40人;在45名女性驾驶员中,平均车速不超过100
的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100
的人与性别有关.
平均车速超过100 | 平均车速不超过100 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100
的车辆数为
,若每次抽取的结果是相互独立的,求
的分布列和数学期望.
参考公式与数据:
,其中![]()
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义首项为1且公比为正数的等比数列为“M-数列”.
(1)已知等比数列{an}满足:
,求证:数列{an}为“M-数列”;
(2)已知数列{bn}满足:
,其中Sn为数列{bn}的前n项和.
①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn}
,对任意正整数k,当k≤m时,都有
成立,求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,抛物线
上的点到准线的最小距离为2.
(1)求抛物线
的方程;
(2)若过点
作互相垂直的两条直线
,
,
与抛物线
交于
,
两点,
与抛物线
交于
,
两点,
,
分别为弦
,
的中点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com