【题目】如图1,在边长为2的菱形
中,
,将
沿对角线
折起到
的位置,使平面
平面
,
是
的中点,
平面
,且
,如图2.
![]()
(1)求证:
平面
;
(2)求平面
与平面
所成角的余弦值;
(3)在线段
上是否存在一点
,使得
平面
?若存在,求
的值;若不存在,说明理由.
【答案】(1)见解析(2)
(3)线段
上不存点
,使得
平面
.见解析
【解析】
(1)平面
平面
,由面面垂直的性质定理,可证
,得出
,即可得证结论;
(2)建立空间直角坐标系,求出平面
的法向量,即可求解;
(3)利用共线向量,将
用坐标表示,根据平面
法向量与
平面,即可求出结论.
(1)证明:∵
,
为
的中点,∴
.
又平面
平面
,且平面
平面
,
∴
.∵
平面
,∴
,
而
平面
,
平面
,∴
平面
.
(2)解:以
所在直线为
轴,
所在直线为
轴,
所在直线为
轴建立空间直角坐标系,
如图所示:则
,
,
,
,
,
∴
,
,
设平面
的一个法向量为
,
则
,
取
,则
.
又平面
的一个法向量为
,
∴
.
则平面
与平面
所成角的余弦值为
.
(3)解:假设在线段
上存在
,使得
平面
,
设
,则
,
∴
,
,
.而
.
由
,可知
不存在,
∴线段
上不存点
,使得
平面
.
![]()
科目:高中数学 来源: 题型:
【题目】
汉字听写大会
不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试
现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组
,第2组
,
,第6组
,如图是按上述分组方法得到的频率分布直方图.
![]()
若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;
试估计该市市民正确书写汉字的个数的平均数与中位数;
已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三角形
的边长为3,
分别是
边上的点,满足
(如图1).将
折起到
的位置,使平面
平面
,连接
(如图2).
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
.数列
满足
,
.
(1)若
,且
,求正整数
的值;
(2)若数列
,
均是等差数列,求
的取值范围;
(3)若数列
是等比数列,公比为
,且
,是否存在正整数
,使
,
,
成等差数列,若存在,求出一个
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
(2)线性回归直线必过点
;
(3)对于分类变量A与B的随机变量
,
越大说明“A与B有关系”的可信度越大.
(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数
的值越大,说明拟合的效果越好.
(5)根据最小二乘法由一组样本点
,求得的回归方程是
,对所有的解释变量
,
的值一定与
有误差.
以上命题正确的序号为____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点
作圆
的两条切线,切点分别为
,直线
恰好经过椭圆C:
的右顶点和上顶点.
(1)求椭圆C方程;
(2)过椭圆C左焦点F的直线l交椭圆C于
两点,椭圆上存在一点P,使得四边形
为平行四边形,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).
![]()
A. 90B. 75C. 60D. 45
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com