如图所示,直线l:y=x+b与抛物线C:x2=4y相切于点A.![]()
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
科目:高中数学 来源: 题型:解答题
如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A,B,M为抛物线弧AB上的动点.![]()
(1)若|AB|=8,求抛物线的方程;
(2)求
的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
+
=1(a>b>0),点P(
a,
a)在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
过点P(1,
),其左、右焦点分别为F1,F2,离心率e=
, M, N是直线x=4上的两个动点,且
·
=0.![]()
(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为
和
,且|![]()
|=2,
点(1,
)在该椭圆上.
(1)求椭圆C的方程;
(2)过
的直线
与椭圆C相交于A,B两点,若
A
B的面积为
,求以
为圆心且与直线
相切圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆C:
+
=1(a>b>0),称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(
,0),其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设点P是圆x2+y2=4上任意一点,由点P向x轴作垂线PP0,垂足为P0,且
=![]()
.
(1)求点M的轨迹C的方程;
(2)设直线l:y=kx+m(m≠0)与(1)中的轨迹C交于不同的两点A,B.
若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,右焦点
到直线
的距离为
.
(1)求椭圆
的方程;
(2)过椭圆右焦点F2斜率为
(
)的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的一个焦点
与抛物线
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为
的直线
过点
.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为
,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com