设数列{an}前n项和为Sn,点
均在直线
上.
(1)求数列{an}的通项公式;
(2)设
,Tn是数列{bn}的前n项和,试求Tn;
(3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.
(1)
(2)
(3)![]()
解析试题分析:(1)将点代入直线方程整理可得
,用公式
可推导出
。(2)由
可得
,可证得数列
为等比数列 ,用等比数列的前
项和公式可求其前
项和
。(3)因为
等差
等比,所以用错位相减法求数列
的前
项和。
试题解析:(1)依题意得,
即
. (1分)
当
时,
. (2分)
当
时,
; (4分)
所以
. (5分)
(2)由(1)得
, (6分)
由
, (7分)
由
,可知{bn}为首项为9,公比为9的等比数列. (8分)
故
. (9分)
(3)由(1)、(2)得
(10分)
(11分)
(12分)
(13分)
(14分)
考点:1公式法求数列的通项公式;2等比数列的定义;3等比数列的前
项和;4错位相减法求数列的前
项和。
科目:高中数学 来源: 题型:解答题
学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有
改选B菜;而选B菜的,下星期一会有
改选A菜。用
分别表示第
个星期选A的人数和选B的人数.
⑴试用
表示
,判断数列
是否成等比数列并说明理由;
⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn=
,记数列{cn}的前n项和Tn.若对?n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的数列
满足
, 且
,其中
.
(1) 求数列
的通项公式;
(2) 设数列
满足
,是否存在正整数
,使得
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由。
(3) 令
,记数列
的前
项和为
,其中
,证明:
。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com