精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面是边长是1的正方形,侧棱PA与底面成45°的角,M,N,分别是AB,PC的中点;

(1)求证:MN∥平面PAD;
(2)求四棱锥P﹣ABCD的体积.

【答案】
(1)证明:设PD的中点为E,连NE,AE

根据三角形的中位线可知NE∥CD,且NE= CD,

AM∥CD,且AM= CD,

∴NE∥AM,且NE=AM

∴MN∥AE,

AE平面PAD,MN平面PAD,

∴MN∥平面PAD


(2)解:四棱锥P﹣ABCD的底面积为1,

因为PD⊥平面ABCD,所以四棱锥P﹣ABCD的高为1,

所以四棱锥P﹣ABCD的体积为:


【解析】(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行,根据三角形的中位线可知PC∥EO,满足定理条件;(2)根据四棱锥P﹣ABCD的底面积为1,高为PD,即可求出四棱锥P﹣ABCD的体积.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD=
(1)求三棱锥A﹣PCD的体积;
(2)问:棱PB上是否存在点E,使得PD∥平面ACE?若存在,求出 的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正项数列{an}满足: =an+1﹣an(a∈N*),则称此数列为“比差等数列”.
(1)请写出一个“比差等数列”的前3项的值;
(2)设数列{an}是一个“比差等数列”
(i)求证:a2≥4;
(ii)记数列{an}的前n项和为Sn , 求证:对于任意n∈N*,都有Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为

1求动点的轨迹的方程;

2过动点作曲线的两条切线,切点分别为 ,求证: 的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个无穷数列的前项和分别为 对任意的,都有

1)求数列的通项公式;

2)若 为等差数列,对任意的,都有证明:

3)若 为等比数列 求满足 值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为ɑ 的正方体ABCD﹣A1B1C1D1中,E、F、G分别是CB.CD.CC1的中点.

(1)求直线 A1C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥A﹣BCD的各个棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是(

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算 的值的一个程序框图,判断框内应填入的条件是(

A.i<20
B.i>20
C.i<10
D.i>10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆x2+4y2=4,直线l:y=x+m
(1)若l与椭圆有一个公共点,求m的值;
(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.

查看答案和解析>>

同步练习册答案