【题目】在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面是边长是1的正方形,侧棱PA与底面成45°的角,M,N,分别是AB,PC的中点; ![]()
(1)求证:MN∥平面PAD;
(2)求四棱锥P﹣ABCD的体积.
【答案】
(1)证明:设PD的中点为E,连NE,AE
根据三角形的中位线可知NE∥CD,且NE=
CD,
AM∥CD,且AM=
CD,
∴NE∥AM,且NE=AM
∴MN∥AE,
AE平面PAD,MN平面PAD,
∴MN∥平面PAD
(2)解:四棱锥P﹣ABCD的底面积为1,
因为PD⊥平面ABCD,所以四棱锥P﹣ABCD的高为1,
所以四棱锥P﹣ABCD的体积为: ![]()
【解析】(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行,根据三角形的中位线可知PC∥EO,满足定理条件;(2)根据四棱锥P﹣ABCD的底面积为1,高为PD,即可求出四棱锥P﹣ABCD的体积.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行).
科目:高中数学 来源: 题型:
【题目】如图四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD=
. ![]()
(1)求三棱锥A﹣PCD的体积;
(2)问:棱PB上是否存在点E,使得PD∥平面ACE?若存在,求出
的值,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正项数列{an}满足:
=an+1﹣an(a∈N*),则称此数列为“比差等数列”.
(1)请写出一个“比差等数列”的前3项的值;
(2)设数列{an}是一个“比差等数列”
(i)求证:a2≥4;
(ii)记数列{an}的前n项和为Sn , 求证:对于任意n∈N*,都有Sn>
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
,直线
与动直线
的交点为
,线段
的中垂线与动直线
的交点为
.
(1)求动点
的轨迹
的方程;
(2)过动点
作曲线
的两条切线,切点分别为
,
,求证:
的大小为定值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个无穷数列
和
的前
项和分别为
,
,
,
,对任意的
,都有
.
(1)求数列
的通项公式;
(2)若
为等差数列,对任意的
,都有
.证明:
;
(3)若
为等比数列,
,
,求满足
的
值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为ɑ 的正方体ABCD﹣A1B1C1D1中,E、F、G分别是CB.CD.CC1的中点. ![]()
(1)求直线 A1C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥A﹣BCD的各个棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是( ) ![]()
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆x2+4y2=4,直线l:y=x+m
(1)若l与椭圆有一个公共点,求m的值;
(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com