精英家教网 > 高中数学 > 题目详情

相交于G.,,且,所以如图,已知正方体ABCD—A1B1C1D1的棱长为a,求异面直线A1C1与BD1的距离.


解析:

本题的关键是画出A1C1与BD1的公垂线,连B1D1交A1C1于O,在平面BB1D1内作OM⊥BD1,则OM就是A1C1与BD1的公垂线,问题得到解决.

解  连B1D1交A1C1于O,作OM⊥BD1于M.

∴  A1C1⊥B1D1,BB1⊥A1C1,BB1∩B1D1=B1.

∴  A1C1⊥平面BB1D1.  ∴  A1C1⊥OM,又OM⊥BD1.

∴  OM是异面直线A1C1与BD1的公垂线.

在直角ΔBB1D1中作B1N⊥BD1于N.

∵  BB1·B1D1=B1N·BD1,a·a=B1a,

∴  B1N=a,OM=B1N=a.

故异面直线A1C1与BD1的距离为a.

评析:作异面直线的公垂线一般是比较困难的,只有熟练地掌握线、线垂直,线、面垂直的关系后才能根据题目所给条件灵活作出.本题在求OM的长度时,主要运用中位线和面积的等量关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
OM
=x
OA
ON
=y
OB

(1)求证:x与y的关系为y=
x
x+1

(2)设f(x)=
x
x+1
,定义函数F(x)=
1
f(x)
-1(0<x≤1)
,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
1
2
的等比数列,O为原点,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在点Q(1,m),使得
OP
OQ
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),直线AG,BG相交于点G,且它们的斜率之积是-
14

(Ⅰ)求点G的轨迹Ω的方程;
(Ⅱ)圆x2+y2=4上有一个动点P,且P在x轴的上方,点C(1,0),直线PA交(Ⅰ)中的轨迹Ω于D,连接PB,CD.设直线PB,CD的斜率存在且分别为k1,k2,若k1=λk2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:湖北省荆州中学2008高考复习立体几何基础题题库一(有详细答案)人教版 人教版 题型:044

设A1C与C1O相交于G,∵A1C1∥AC,且A1C1∶OC=2∶1,所以C1O:如图,已知正方体ABCD-A1B1C1D1的棱长为a,求异面直线A1C1与BD1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图,BC是半圆的直径,DE是半圆上的两点,且.过C作半圆的切线,与BE的延长线相交于FBECD相交于GCEBD的延长线相交于A,连结DE

(1)求证:AB=BC

(2)如果BG=3k,试用含k的代数式表示AC

(3)FC=aBFFC=b,求证:是方程的根,并求出这个方程的另一个根.

查看答案和解析>>

同步练习册答案