精英家教网 > 高中数学 > 题目详情
若正数a,b满足ab=a+b+3,求ab的取值范围.
分析:将式子中的a+b用ab表示,再解不等式求出范围
解答:解:∵正数a,b
∴ab=a+b+3≥2
ab
+3
∴ab≥2
ab
+3
(
ab
-3)(
ab
+1)
≥0
ab
≥3或
ab
≤-1

∴ab≥9
点评:若一个等式中,有两个数的乘积同时有这两个数的和,求其中一个的最值时,通常用的方法是:用基本不等式将等式转化成要求部分的不等式,解不等式求出范围
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若正数a,b满足ab=a+b+3,则ab的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数a,b满足ab=a+b+3,则ab的取值范围是(  )
A、[6,+∞)B、[9,+∞)C、(-∞,9]D、(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数a,b满足ab=a+b+3,则a+b的取值范围是
[6,+∞)
[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数a,b满足ab=8+a+b,则ab的取值范围是
[16,+∞)
[16,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数a,b满足ab=a+b+8,则ab的最小值为
16
16

查看答案和解析>>

同步练习册答案