(本小题满分13分)
已知椭圆
的焦点分别为
,且过点
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
内一点,直线
交椭圆
于
两点,且
为线段
的中点,求直线
的方程.
科目:高中数学 来源: 题型:解答题
直线
与椭圆
交于
,
两点,已知![]()
,![]()
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线
过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
(Ⅲ)试问:
的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,
是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问
是否为定值,若是,求出定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在圆![]()
上任取一点
,过点
作
轴的垂线段
,
为垂足.当点
在圆上运动时,线段
的中点
形成轨迹
.
(1)求轨迹
的方程;
(2)若直线
与曲线
交于
两点,
为曲线
上一动点,求
面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知椭
圆
,
的离心率为
,直线
与以
原点为圆心,以椭圆
的短半轴长为半径的圆相切。
、求椭圆
的方程;
、过点
的直线
(斜率存在时)与椭圆
交于
、
两点,设
为椭圆
与
轴负半轴的交点,且
,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知离心率为
的椭圆
上的点到
左焦点
的最长距离为![]()
(1)求椭圆的方程;
(2)如图,过椭圆的左焦点
任作一条与两坐标轴都不垂直的弦
,若点
在
轴上,且使得
为
的一条内角平分线,则称点
为该椭圆的“左特征点”,求椭圆的“左特征点”
的坐标.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com