精英家教网 > 高中数学 > 题目详情
已知向量a=(1,1),b=(1,0),c满足a·c=0,且|a|=|c|,b·c>0.

(1)求向量c;

(2)若映射f:(x,y)→(x′,y′)=xa+yc;

①求映射f下(1,2)的原象;

②若将(x,y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由.

解:(1)设c=(x,y),则

∴c=(1,-1).                                                    

(2)①x(1,1)+y(1,-1)=(1,2),

∴原象是(,-).                                                           

②假设l存在,设其方程为y=kx+b(k≠0),

又xa+yc=(x+y,x-y).

∵点(x+y,x-y)在直线上,

∴x-y=k(x+y)+b,

即(1+k)y=(1-k)x-b与y=kx+b表示同一直线.

∴b=0,k=-1±.

∴直线l存在,其方程为y=(-1±)x.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,1)
b
=(2,3)
,向量λ
a
-
b
垂直于y轴,则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知向量
 a 
=(1, 1-cosθ),  
 b 
=(1+cosθ, 
1
2
),且 
 a 
 b 
,则锐角θ等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量ab不共线,实线x,y满足向量等式(2x-y)a+4b=5a+(x-2y)b,则x+y的值等于(    )

A.-1                 B.1               C.0                D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a = (1,1),向量b与向量a 的夹角为,且a?b = -1.

   (1)求向量b

   (2)若向量bq =(1,0)的夹角为,向量p = ,其中A,C为△ABC的内角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a = (1,1),向量b与向量a 的夹角为,且a?b = -1.

   (1)求向量b

   (2)若向量bq =(1,0)的夹角为,向量p = ,其中A,C为△ABC的内角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

同步练习册答案