【题目】在平面直角坐标系
中,已知椭圆
短轴的两个顶点与右焦点的连线构成等边三角形,两准线之间的距离为
.
![]()
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,设直线
,
的斜率分别为
,
.已知
.
①求
的值;
②当
的面积最大时,求直线
的方程.
【答案】(1)
;(2)①
;②
.
【解析】
(1)设椭圆的焦距为
,则
.利用短轴的两个顶点与右焦点的连线构成等边三角形,求出
,
,然后求解椭圆
的标准方程.
(2)①设
,
,
,
,联立
利用韦达定理,通过直线的斜率求解即可;②由①得
,直线
的方程为
,然后求解弦长,点到直线的距离,求解三角形的面积,然后求解即可.
解:(1)设椭圆的焦距为
,则
.
因为短轴的两个顶点与右焦点的连线构成等边三角形,
所以
.
又两准线间的距离为
,则
,
所以
,
,
所以椭圆
的标准方程为
.
(2)①设
,
,
,
,
联立
消去
得
,
,化简得
,
所以
,
,
又
的斜率
,
的斜率
,
所以
,
化简得
,
所以
.又因为
,即
,
又
,所以
.
②由①得
,直线
的方程为
,
且
,
,
.
又
,所以
.
所以![]()
,
点
到直线
的距离
,
所以
,
当且仅当
,即
时,
的面积最大,
所以,直线
的方程为
.
科目:高中数学 来源: 题型:
【题目】过椭圆
的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线
与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以原点
为圆心,椭圆
的长半轴为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知点
,
为动直线
与椭圆
的两个交点,问:在
轴上是否存在点
,使
为定值?若存在,试求出点
的坐标和定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】稠环芳香烃化合物中有不少是致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它是由一个苯环和一个芘分子结合而成的稠环芳香烃类化合物,长期食用会致癌.下面是一组稠环芳香烃的结构简式和分子式:
名称 | 萘 | 蒽 | 并四苯 | … | 并n苯 |
结构简式 |
|
|
| … | … |
分子式 |
|
|
| … | … |
由此推断并十苯的分子式为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的非负半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求直线
与曲线
的普通方程;
(2)若直线
与曲线
交于
、
两点,点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,若摸出的“两个都是红球”出现3次获得200分,若摸出“两个都是红球”出现1次或2次获得20分,若摸出“两个都是红球”出现0次则扣除10分(即获得
分).
(1)设每轮游戏中出现“摸出两个都是红球”的次数为
,求
的分布列;
(2)玩过这款游戏的许多人发现,若干轮游戏后,与最初的分数相比,分数没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元五世纪,数学家祖冲之估计圆周率
的值的范围是:
,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的非负半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求直线
与曲线
的普通方程;
(2)若直线
与曲线
交于
、
两点,点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度
(单位:分贝)与声音能量(单位:
)之间的关系,将测量得到的声音强度
和声音能量
(
=1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.
![]()
|
|
|
|
|
| 45.7 |
|
| 0.51 |
|
| |||
| 5.1 | |||
表中
,
.
(1)根据散点图判断,
与
哪一个适宜作为声音强度
关于声音能量的回归方程类型?(给出判断即可,不必说明理由)
(2)根据表中数据,求声音强度
关于声音能量的回归方程;
(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点
共受到两个声源的影响,这两个声源的声音能量分别是
和
,且
.己知点
的声音能量等于声音能量
与
之和.请根据(1)中的回归方程,判断
点是否受到噪音污染的干扰,并说明理由.
附:对于一组数据
.其回归直线
的斜率和截距的最小二乘估计分别为:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com