精英家教网 > 高中数学 > 题目详情
已知椭圆的左焦点为F1(-1,0),点F1关于直线16x+12y-9=0对称点在椭圆上.
(I)求椭圆方程;
(II)点M(x,y)在圆x2+y2=b2上,M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.

【答案】分析:(I)由已知中椭圆的左焦点为F1(-1,0),可得c值,点F1关于直线16x+12y-9=0对称点在椭圆上可得a值,进而求出b值后,可得椭圆方程;
(II)设P(x1,y1),Q(x2,y2),分别求出|F2P|,|F2Q|,结合相切的条件可得|PM|2=|OP|2-|OM|2求出|PQ|,可得结论.
解答:解:(I)∵右焦点为F2(1,0)∴c=1
左焦点为F1(-1,0),点
在椭圆上
∴a=2,
所以椭圆方程为-------------------------------------(4分)
(II)设P(x1,y1),Q(x2,y2


--------------------------------------------------------.(7分)
连接OM,OP,由相切条件知:

---------------------------------------------------.(10分)
同理可求

所以|F2P|+|F2Q|+|PQ|=2+2=4为定值.-------------------------------------------(12分)
点评:本题考查的知识点是椭圆的标准方程,直线与圆的位置关系,直线与椭圆的位置关系,熟练掌握椭圆的性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)  已知椭圆的左焦点为F,O为坐标原点。

       (I)求过点O、F,并且与椭圆的左准线相切的圆的方程;

       (II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围。

查看答案和解析>>

科目:高中数学 来源:2006年福建省高考数学试卷(文科)(解析版) 题型:解答题

已知椭圆的左焦点为F,O为坐标原点.
(I)求过点O、F,并且与椭圆的左准线l相切的圆的方程;
(II)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线x+y=0上,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省高三第三次模拟考试理科数学试卷(解析版) 题型:解答题

如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.

(Ⅰ)若点G的横坐标为,求直线AB的斜率;

(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2

试问:是否存在直线AB,使得S1=S2?说明理由.

 

查看答案和解析>>

科目:高中数学 来源:江苏南通市通州区2010高三查漏补缺专项练习数学理 题型:解答题

(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为AC

上顶点为B,过F,B,C三点作,其中圆心P的坐标为

(1) 若椭圆的离心率,求的方程;

(2)若的圆心在直线上,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年黑龙江省高二上学期期末考试数学理卷 题型:填空题

已知椭圆的左焦点为F,右顶点为A,点B在椭圆上,且轴,直线AB交轴于点P。若,则椭圆的离心率为     

 

查看答案和解析>>

同步练习册答案