【题目】 如图,在三棱锥A-BCD中,CA=CB,DA=DB.作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.
【答案】详见解析
【解析】
试题证明线面垂直,可利用线面垂直的判定定理,证明直线与平面内的两条相交直线垂直,进而说明线面垂直.本题利用两个等腰三角形三线合一,取AB的中点F,连接DF、CF,得出线面垂直,从而证明AB与CD垂直,又利用CD与BE垂直,从而得出线CD与面ABE垂直,得出CD与AH垂直,又AH与BE垂直,于是证明出线面垂直.
试题解析:
取AB的中点F,连接CF、DF.
∵CA=CB,DA=DB,∴CF⊥AB,DF⊥AB.
∵CF∩DF=F,∴AB⊥平面CDF.
∵CD平面CDF,∴AB⊥CD.
又CD⊥BE,AB∩BE=B,∴CD⊥平面ABE.
∵AH平面ABE,∴CD⊥AH.
∵AH⊥BE,BE∩CD=E,∴AH⊥平面BCD.
科目:高中数学 来源: 题型:
【题目】设函数,函数,,其中为常数,且,令函数为函数和的积函数.
(1)求函数的表达式,并求其定义域;
(2)当时,求函数的值域
(3)是否存在自然数,使得函数的值域恰好为?若存在,试写出所有满足条件的自然数所构成的集合;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市A,B两校组织了一次英语笔试(总分120分)联赛,两校各自挑选了英语笔试成绩最好的100名学生参赛,成绩不低于115分定义为优秀.赛后统计了所有参赛学生的成绩(都在区间内),将这些数据分成4组:得到如下两个频率分布直方图:
(1)分别计算A,B两校联赛中的优秀率;
(2)联赛结束后两校将根据学生的成绩发放奖学金,已知奖学金y(单位:百元)与其成绩t的关系式为
①当时,试问A,B两校哪所学校的获奖人数更多?
②当时,若以奖学金的总额为判断依据,试问本次联赛A,B两校哪所学校实力更强?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是( )
A.各年的月接待游客量高峰期大致在7,8月份
B.年接待游客量逐年增加
C.月接待游客量逐月增加
D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:2x﹣y+2=0与l2:x+y+4=0.
(1)若一条光线从l1与l2的交点射出,与x轴交于点P(3,0),且经x轴反射,求反射光线所在直线的方程;
(2)若直线l经过点P(3,0),且它夹在直线l1与l2之间的线段恰被点P平分,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点、分别为双曲线的左、右焦点,双曲线的离心率为,点在双曲线上,不在轴上的动点与动点关于原点对称,且四边形的周长为.
(1)求动点的轨迹的方程;
(2)过点的直线交的轨迹于,两点,为上一点,且满足,其中,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com