精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=x-alnx(a∈R).
(1)若a=2,求函数f(x)的单调区间;
(2)若对任意x∈(1,+∞),f(x)>0恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,解关于导函数不等式,求出函数的单调区间;
(2)分离参数a,令$h(x)=\frac{x}{lnx},则{h^'}(x)=\frac{lnx-1}{{{{(lnx)}^2}}}$,根据函数的单调性求出h(x)的最小值,求出a的范围即可.

解答 解:(1)当a=2时,${f^'}(x)=1-\frac{2}{x}=\frac{x-2}{x},令{f^'}(x)>0$,得x>2,
所以函数f(x)得单调递增区间为(2,+∞),单调递减区间为(0,2)…(4分)
(2)对于$x∈(1,+∞)时f(x)>0恒成立?a<\frac{x}{lnx}对于x∈(1,+∞)恒成立$$?a<{(\frac{x}{lnx})_{min}}$…(6分)
令$h(x)=\frac{x}{lnx},则{h^'}(x)=\frac{lnx-1}{{{{(lnx)}^2}}}$,由h'(x)>0⇒x>e,
所以h(x)的单调增区间为(e,+∞),单调递减区间为(1,e)…(10分)
∴h(x)min=h(e)=e,∴a<e,a的取值范围为(-∞,e)…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.空间中两点A(1,0,1),B(2,1,-1),则|AB|的值为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在R上定义运算?:x?y=$\frac{x}{2-y}$,若关于x的不等式:(x-a)?(x+1-a)>0的解集是集合{x|-2≤x≤2}的子集,则实数a的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过抛物线C:y2=4x的焦点F作直线l交C于A,B两点,则|AF|+2•|BF|的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知P(1,1)为椭圆2x2+y2=4内一定点,过P引一条弦,使此弦以P为中点,则弦所在的直线方程2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.计算:cos25°sin55°-sin25°cos55°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},则A∩B中的元素个数为(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某次数学测验,12名同学所得分数的茎叶图如图,则这些分数的中位数是(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=xex(e为自然对数的底数),g(x)=(x+1)2
(Ⅰ)记$F(x)=\frac{f(x)}{g(x)}$,讨论函数F(x)的单调性;
(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案