【题目】已知椭圆
的离心率为
,以原点
为圆心,椭圆
的长轴为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知过点
的动直线与椭圆
的两个交点为
,求
的面积S的取值范围.
科目:高中数学 来源: 题型:
【题目】已知点
、
的坐标分别是
,
,直线
,
相交于点
,且它们的斜率之积为
.
(1)求动点
的轨迹方程;
(2)若过点
的直线
交动点
的轨迹于
、
两点, 且
为线段
,
的中点,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个命题,
(1)函数
在第一象限是增函数;
(2)在
中,“
”是“
”的充分非必要条件;
(3)函数
图像关于点
对称的充要条件是
;
(4)若
,则
.
其中真命题的是_________.(填所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知函数f(x)
(2x
),若f(
)
,θ∈(0,
),求tanθ.
(2)若函数g(x)=﹣(
sin
cos
)cos
,讨论函数g(x)在区间[
,
上的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.
![]()
问:(1)这个几何体是什么?
(2)这个几何体由几个面构成?每个面的三角形是什么三角形?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分两层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:
表1:
生产能力分组 |
|
|
|
|
|
人数 | 4 | 8 | x | 5 | 3 |
表2:
生产能力分组 |
|
|
|
|
人数 | 6 | y | 36 | 18 |
(1)求x,y的值;
(2)在答题纸上完成频率分布直方图;并根据频率分布直方图,估计该工厂B类工人生产能力的平均数(同一组中的数据用该区间的中点值作代表)和中位数.(结果均保留一位小数)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线
:
经过伸缩变换
后得到曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求出曲线
、
的参数方程;
(Ⅱ)若
、
分别是曲线
、
上的动点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1、B1C1的中点,问:
![]()
(1)AM和CN是否是异面直线?说明理由;
(2)D1B和CC1是否是异面直线?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com