在平面直角坐标系xOy中,已知椭圆C1:
=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
(1)
+y2=1; (2)y=
x+
或y=-
x-
.
解析试题分析:(1)由于椭圆的方程是标准方程,知其中心在坐标原点,对称轴就是两坐标轴,所以由已知可直接得到半焦距c及短半轴b的值,然后由
求得
的值,进而就可写出椭圆的方程;(2)由已知得,直线l的斜率显然存在且不等于0,故可设直线l的方程为y=kx+m,然后联立直线方程与椭圆C1的方程,消去y得到关于x的一个一元二次方程,由直线l同时与椭圆C1相切知,其判别式等于零得到一个关于k,m的方程;再联立直线l与抛物线C2的方程,消去y得到关于x的一个一元二次方程,由直线l同时与抛物线C2相切知,其判别式又等于零,再得到一个关于k,m的方程;和前一个方程联立就可求出k,m的值,从而求得直线l的方程.
试题解析:(1)因为椭圆C1的左焦点为F1(-1,0),
所以c=1.将点P(0,1)代入椭圆方程
=1,
得
=1,即b=1. 所以a2=b2+c2=2.
所以椭圆C1的方程为
+y2=1.
(2)由题意可知,直线l的斜率显然存在且不等于0,设直线l的方程为y=kx+m,由
消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.
因为直线l与椭圆C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理,得2k2-m2+1=0, ①
由
消y,得
k2x2+(2km-4)x+m2=0.
∵直线l与抛物线C2相切,
∴Δ2=(2km-4)2-4k2m2=0,整理,得km=1, ②
联立①、②,得
或![]()
∴l的方程为y=
x+
或y=-
x-
.
考点:1.椭圆的方程;2.直线与圆锥曲线的位置关系.
科目:高中数学 来源: 题型:解答题
定义:我们把椭圆的焦距与长轴的长度之比即
,叫做椭圆的离心率.若两个椭圆的离心率
相同,称这两个椭圆相似.
(1)判断椭圆
与椭圆
是否相似?并说明理由;
(2)若椭圆![]()
与椭圆
相似,求
的值;
(3)设动直线
与(2)中的椭圆
交于
两点,试探究:在椭圆
上是否存在异于
的定点
,使得直线
的斜率之积为定值?若存在,求出定点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆G:
经过椭圆
的右焦点F及上顶点B,过椭圆外一点(m,0)(
)倾斜角为
的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆![]()
的离心率为
,其左焦点到点
的距离为
.
(1) 求椭圆
的标准方程;
(2) 若直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知抛物线
:
,在此抛物线上一点![]()
到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线
的准线与
轴交于
点,过
点斜率为
的直线
与抛物线
交于
、
两点.是否存在这样的
,使得抛物线
上总存在点
满足
,若存在,求
的取值范围;若不存在,说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com