精英家教网 > 高中数学 > 题目详情
设数列满足,则为等差数列是为等比数列的­­­____________条件                 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•嘉定区一模)设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式Sn-1005>
a
2
n
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出这个极限值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正数数列{an} 的前n项和为 Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an} 的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k≤1500中,是否存在正整数m,使得不等式Sn-1005>
an22
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正数数列的前项和为,且对任意的的等差中项.(1)求数列的通项公式;

    (2)在集合,且中,是否存在正整数,使得不等式对一切满足的正整数都成立?若存在,则这样的正整数共有多少个?并求出满足条件的最小正整数的值;若不存在,请说明理由;

    (3)请构造一个与数列有关的数列,使得存在,并求出这个极限值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式数学公式对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得数学公式存在,并求出这个极限值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正数数列{an} 的前n项和为 Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an} 的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k≤1500中,是否存在正整数m,使得不等式Sn-1005>
an2
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案