已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示.
![]()
求:(Ⅰ)x0的值;
(Ⅱ)a,b,c的值.
解法一:
(Ⅰ)由图象可知,在(-∞,1)上f′(x)>0,在(1,2)上f′(x)<0,在(2,+∞)上f′(x)>0,
故f(x)在(-∞,1),(2,+∞)上递增,在(1,2)上递减,因此f(x)在x=1处取得极大值,所以x0=1.
(Ⅱ)f′(x)=3ax2+2bx+c,
由f′(1)=0,f′(2)=0,f(1)=5.
得![]()
解得a=2,b=-9,c=12.
解法二:
(Ⅰ)同解法一.
(Ⅱ)设f′(x)=m(x-1)(x-2)=mx2=3mx+2m,
又f′(x)=3ax2+2bx+c,
所以a=
,b=-
m,c=2m,f(x)=
x3-
mx2+2mx.
由f(1)=5,
即
-
m+2m=5,
得m=6,
所以a=2,b=-9,c=12.
科目:高中数学 来源: 题型:
| 1 | 2x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| a(x-1) | x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | 2x-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com