【题目】设椭圆
的焦点在
轴上,离心率为
,抛物线
的焦点在
轴上,
的中心和
的顶点均为原点,点
在
上,点
在
上,
(1)求曲线
,
的标准方程;
(2)请问是否存在过抛物线
的焦点
的直线
与椭圆
交于不同两点
,使得以线段
为直径的圆过原点
?若存在,求出直线
的方程;若不存在,说明理由.
【答案】(1)
,
;(2)不存在.
【解析】试题分析:(1)利用待定系数法设
的方程为
,根据离心率
和点
在
上,列出方程组,解出
,故得其方程,根据题意可设
的方程为
,由
可得最后结果;(2)将以线段
为直径的圆过原点
等价转化为
,假设存在,首先验证斜率不存在时不满足题意,当斜率不存在时,联立直线与椭圆的方程,结合韦达定理可得结果.
试题解析:(1)设
的方程为
,则
.所以椭圆
的方程为
.点
在
上,设
的方程为
,则由
,得
.所以抛物线
的方程为
.
(2)因为直线
过抛物线
的焦点
.当直线
的斜率不存在时,点
,或点
,显然以线段
为直径的圆不过原点
,故不符合要求;
当直线
的斜率存在时,设为
,则直线
的方程为
,
代入
的方程,并整理得
.
设点
,则
,
.
因为以线段
为直径的圆过原点
,所以
,所以
,所以
,所以
.化简得
,无解.
科目:高中数学 来源: 题型:
【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
分组 | 频数 | 频率 |
| 5 | 0.05 |
|
| 0.20 |
| 35 |
|
| 25 | 0.25 |
| 15 | 0.15 |
合计 | 100 | 1.00 |
(1)求
的值并估计这100名考生成绩的平均分;
(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
到坐标原点的距离和它到直线
的距离之比是一个常数
.
(1)求点
的轨迹;
(2)若
时得到的曲线是
,将曲线
向左平移一个单位长度后得到曲线
,过点
的直线
与曲线
交于不同的两点
,过
的直线
分别交曲线
于点
,设
,
,
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是
或
作品获得一等奖”;
乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”;
丁说:“是
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
的极坐标方程为
,曲线
的极坐标方程为
,以极点
为坐标原点,极轴为
的正半轴建立平面直角坐标系
.
(1)求
和
的参数方程;
(2)已知射线
,将
逆时针旋转
得到
,且
与
交于
两点,
与
交于
两点,求
取得最大值时点
的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)=
是奇函数.
(1)求f(x)的解析式;
(2)若对任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+px+q与函数y=f(f(f(x)))有一个相同的零点,则f(0)与f(1)( )
A.均为正值
B.均为负值
C.一正一负
D.至少有一个等于0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
).
(1)当
时,求函数
的极值点;
(2)若函数
在区间
上恒有
,求实数
的取值范围;
(3)已知
,且
,在(2)的条件下,证明数列
是单调递增数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
为自然对数的底数).
(1)设曲线
在
处的切线为
,若
与点
的距离为
,求
的值;
(2)若对于任意实数
,
恒成立,试确定
的取值范围;
(3)当
时,函数
在
上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com