精英家教网 > 高中数学 > 题目详情
一个口袋中装有1个红球和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(1)求一次摸奖就中奖的概率;
(2)设三次摸奖(每次摸奖后放回)中奖的次数为ξ,求ξ的分布列及期望值.
【答案】分析:(1)计算出从装有10只球的口袋中每次从中摸出2个球的方法,而摸出的球是不同色的事件数是C51,由古典概型公式,代入数据得到结果,注意运算要正确,因为第二问要用本问的结果.
(2)连续3次摸球中奖的次数为ξ,由题意知ξ的取值是0、1、2、3,本题是一个独立重复试验,根据上面的结果,代入公式得到结果,写出分布列.
解答:解:(1)由题意知本题是一个古典概型,
∵从装有10只球的口袋中每次从中摸出2个球有C62=15种摸法,
摸出的球是不同色的事件数是C51=5,
设一次摸球中奖的概率为P1
由由古典概型公式可得:P1==
所以一次摸奖就中奖的概率为
(2)由题意知ξ的取值可以是0,1,2,3
P(ξ=0)=(1-P13=
P(ξ=1)=C31(1-P12P1=
P(ξ=2)=C32(1-P1)P12=
P(ξ=3)=P13=
∴ξ的分布列如下表:
               ξ                    0                 1                     2                  3
               P                                                                        
所以ξ的期望为Eξ=0×+1×+2×+3×=1.
点评:求离散型随机变量期望的步骤:①确定离散型随机变量 的取值.②写出分布列,并检查分布列的正确与否,即看一下所有概率的和是否为1.③求出期望.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个口袋中装有1个红球和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(1)求一次摸奖就中奖的概率;
(2)设三次摸奖(每次摸奖后放回)中奖的次数为ξ,求ξ的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回连续摸三次,每次摸出2个球,若两个球颜色不同,则为中奖.
(1)当n=3时,设中奖次数为ζ,求ζ的分布列及期望;
(2)记三次摸球中,恰好两次中奖概率为P,当n为多少时,P有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头一模)龙是十二生肖中唯一虚构的动物,中国人对它却是又敬又怕、有一种特殊的感情,龙的地位之高任何动物也无法与之比较,中国人心中,它是一种能呼风唤雨,腾云驾雾的神物.帝王自称自己是真龙天子、百姓自称自己是龙的传人.2012年是中国的农历龙年,为了庆祝龙年的到来,某单位的联欢会上设计了一个摸奖游戏,在一个口袋中装有5个红球和5个白球,这些球除了颜色外完全相同.一次从中摸出2个球,并且规定:摸到2个白球中三等奖,能够得到奖金200元;摸到1个红球,1个白球中二等奖,能够得到奖金600元;摸到2个红球,中一等奖,能够得到奖金1000元.
(Ⅰ)求某人参与摸奖一次,至少得到600元奖金的概率.
(Ⅱ)假设某人参与摸奖一次,所得的奖金为ξ元,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个口袋中装有1个红球和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(1)求一次摸奖就中奖的概率;
(2)设三次摸奖(每次摸奖后放回)中奖的次数为ξ,求ξ的分布列及期望值.

查看答案和解析>>

同步练习册答案